Using of genetic-population studies results for assessment of selection work in dairy cattle populations

DOI: 10.32900/2312-8402-2023-129-103-114

Kulibaba Roman,
Doctor agricultural science, senior scientist,
https://orcid.org/0000-0003-1776-7147,
National University of Life and Environmental Sciences of Ukraine,
Liashenko Yurii,
Candidate of Agricultural Sciences, senior scientist,
https://orcid.org/0000-0003-2747-476X,
Institute of animal science of NAAS of Ukraine,
Sakhatskyi M. I.,
Doctor of Biological Sci., Professor, Academician of NAAS,
https://orcid.org/0000-0002-6113-0226,
National University of Life and Environmental Sciences of Ukraine

Keywords: polymorphism, population, cows, allele, genotype, homozygosity, variability, fixation


Abstract

The article presents the results of complex research that continues previous work aimed at determining the polymorphism of the CSN2, PRL, LEP, and TNF-α loci and analyzing the productivity of dairy cattle with different genotypes for these loci. The goal of the work is to analyze the selection work with populations of dairy cows based on the results of typing individuals for allelic variants of the CSN2, PRL, LEP, and TNF-α loci, which are associated with economically valuable traits but are not directly evaluated by traditional phenotype-based methods. To analyze the data, the observed (Ho) and expected (He) heterozygosity and Wright’s fixation index (Fis) were used. Individual animal typing was performed using AS-PCR (CSN2), SSCP (TNF-α), and PCR-RFLP (PRL, LEP) methods. The studies revealed an excess of heterozygous individuals for the CSN2 and TNF-α loci and a significant predominance of homozygous individuals for the LEP locus in the population of Ukrainian Black-and-White dairy cows. For the prolactin (PRL) and leptin (LEP) genes, a deviation from genetic equilibrium was shown due to the increase in the number of homozygous individuals. In the population of Ukrainian Red-and-White dairy cows, a high level of inbreeding (39%) was found for the PRL locus, which was reflected in a deviation from the genetic equilibrium state (χ2 = 13.50). In the case of the beta-casein and leptin loci, the situation is opposite, with a marked excess of heterozygous individuals (-0.24 and -0.18, respectively), but no deviations from the equilibrium state were observed in the population (χ2 values of 2.06 and 2.42, respectively). For both populations, there were no significant changes in the ratio of different alleles and genotypes for several loci investigated, and the impossibility of fixing desired alleles using traditional breeding methods was demonstrated. Based on a comparative analysis of different types of DNA markers and typing methods (AS-PCR, SSCP, and PCR-RFLP), the sensitivity of the Ho, He, and Fis parameters to the number of alleles at the locus was established, which should be taken into account when conducting genetic-population studies.

References

  1. Komisarek, J., & Dorinek, Z. (2009). Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in polish Holstein-Friesian bulls. Journal of applied genetics. Vol. 50(2). P. 125–132. https://doi.org/10.1007/BF03195663 .
  2. Davis, G. P., & DeNise, S. K. (1998). The impact of genetic markers on selection. Journal of Animal Science. Vol. 76(9). P. 2331. doi:10.2527/1998.7692331x.
  3. MacNeil, M. D., & Grosz, M. D. (2002). Genome-wide scans for QTL affecting carcass traits in Hereford x Composite double backcross populations. Journal of Animal Science. Vol. 80(9). P. 2316–2324.
  4. Lewin, H. A., Schmitt, К., & Hubert, R. (1992). Close linkage between bovine prolactin and BoLA-DRB3 genes mapping in cattle by single sperm typing. Genomics. Vol. 13. P. 44–48.
  5. Adoligbe, C. M., Akpo, S. G., Adido, S., M’Po, M., Zoclanclounon, A., Mantip, S., Akpo, Y., & Farougou, S. (2022). Distribution of the beta-casein gene variants in three cattle breeds reared in Benin. J Agri Sci. Vol.14. P. 86–94. https://doi.org/10.5539/jas.v14n2p86.
  6. Sedykh, T. A., Kalashnikova, L. A., Gusev, I. V., Pavlova, I. Yu., Gizatullin, R. S., & Dolmatova, I. Yu. (2016). Influence of TG5 and LEP gene polymorphism on quantitative and qualitative meat composition in beef calves. Iraqi Journal of Veterinary Sciences. Vol. 30(2). P. 41–48. https://doi.org/10.33899/ijvs.2016.121382.
  7. Buchanan, F. C., Van Kessel, A. G., & Waldner, C. (2003). Hot Topic: An Association Between a Leptin Single Nucleotide Polymorphism and Milk and Protein Yield. J. Dairy Sci. Vol. 86. P. 3164–3166. https://doi.org/10.3168/jds.s0022-0302(03)73.
  8. Buchanan, F. C., Fitzsimmons, C. J., Van Kessel, A. G., Thue, T. D., Winkelman-Sim, D. C., & Schmutz, S. M. (2002). Association of a missense mutation in the bovine leptin gene with carcass fat content and leptin mRNA levels. Genetics Selection Evolution. Vol. 34(1). P. 105. https://doi.org/10.1186/1297-9686-34-1-10.
  9. Yazdani, H., Rahmani, H. R., Edris, M. A., & Dirandeh, E. (2010). Association between A59V polymorphism in exon 3 of leptin gene and reproduction traits in cows of Iranian Holstein. African Journal of Biotechnology. Vol. 9(36). P. 5997–6000.
  10. Deshpande, M., Rank, D. N., & Vataliya, P. H. (2014). Study of leptin gene polymorphism in mehsana buffaloes (Bubalus bubalis). Buffalo Bulletin. Vol. 33 (No.1). P. 115–119.
  11. Kulig, H., Kmieć, M., & Wojdak-Maksymiec, K. (2010). Associations between Leptin Gene Polymorphisms and Somatic Cell Count in Milk of Jersey Cows. Acta Vet. Brno. Vol. 79. P. 237–242. https://doi.org/10.2754/avb201079020237.
  12. Ranjan, S., Bhushan, B., & Panigrahi, M. (2015). Association and Expression Analysis of Single Nucleotide Polymorphisms of Partial Tumor Necrosis Factor Alpha Gene with Mastitis in Crossbred Cattle. Animal Biotechnology. Vol. 26 (2). P. 98–104.
  13. Ogorevc, J., Kunej, T., & Razpet, A. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Animal Genetics. Vol. 40. P. 832–851.
  14. Bojarojć-Nosowicz, B., Kaczmarczyk, E., Stachura, A., & Kotkiewicz, M. (2011). Polymorphism in the promoter region of the tumor necrosis factor-alpha gene in cattle herds naturally infected and uninfected with the Bovine Leukemia Virus. Polish Journal of Veterinary Sciences. Vol. 14(4). P. 671–673. https://doi.org/10.2478/v10181-011-0101-0.
  15. Kulibaba, R, Sakhatskyi, M, & Liashenko, Y. (2023). Comparative analysis of A1 and A2 allele detection efficiency for bovine CSN2 gene by AS-PCR methods. Acta Biochimica Polonica. https://doi.org/10.18388/abp.2020_6530.
  16. Alshamailekh, Kh. S., Liashenko, Yu. V., & Kulibaba, R. O. (2022). Parametry produktyvnosti koriv molochnykh porid z riznymy henotypamy za lokusamy TNF-α ta MYF-5. [Productivity parameters of dairy cows with different genotypes of tnf-α and myf5 locis] Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN– Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine. Kharkiv, № 127. С. 69–79 [In Ukrainian].
  17. Kulibaba, R., Liashenko, Y., Yurko, P., Sakhatskyi, M., Osadcha, Y., & Alshamaileh, H. (2021). Polymorphism of LEP and TNF-α Genes in the Dairy Cattle Populations of Ukrainian Selection. Basrah J. Agric. Sci. Vol. 34(1). P. 180–191. https://doi.org/10.37077/25200860.2021.34.1.16.
  18. Kulibaba, R. O., Liashenko, Y. V., & Yurko P. S. (2019). Genetic structure features of cattle populations of Ukrainian selection by polymorphism of loci that are associated with milk productivity traits. Agricultural Science and Practice. Vol. 6, No. 3, P. 37–44.
  19. Smouse, P. E., Banks, S. C., & Peakall, R. (2017). Converting quadratic entropy to diversity: Both animals and alleles are diverse, but some are more diverse than others. PLOS ONE. Vol. 12. e0185499.
  20. Kuznecov, V. M. (2014). F-statistiki Rajta: ocenka i interpretaciya. [Wright’s F-statistics: estimation and interpretation] Problemy biologii produktivnyh zhivotnyh. Borovsk. № 4. P. 80–104 [in Russian].
  21. Bisutti, V., Pegolo, S., Giannuzzi, D., Mota, F. M., Vanzin, A., Toscano, A., Trevisi, E., Marsan, P. A., Brasca, M., & Cecchinato A. (2022). The β-ca­sein (CSN2) A2 allelic variant alters milk protein profile and slightly worsens coagulation properties in Holstein cows. J Dairy Sci. Vol.105. P. 3794–3809. https://doi.org/10.3168/jds.2021-21537.
  22. Brym, P., Kaminski, S., & Wojcik, E. (2005). Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits. J. Appl. Genet. Vol. 45. P. 179–185.
  23. Somnez, Z., & Ozdemir, M. (2017). Prolactin-RsaI gene polymorphism in East Anatolian Red cattle in Turkey. S. Afr. J. Anim. Sci. Vol. 47 (2). P. 124–129.
  24. Alipanah, M., Kalashnikova, L. A., & Rodionov, G. V. (2008). Kappa-casein and PRL-RsaI genotypic frequencies in two Russian cattle breeds. Archivos de Zootecnia. Vol. 57 (218). P. 131–138.
  25. Dybus, A. (2002). Associations of growth hormone (GH) and prolactin (Prl) genes polymorphisms with milk production traits in Polish Black-and-White cattle. Anim. Sci. Vol. 20. P. 203–212.
  26. Miceikiene, I., Peciulaitiene, N., Baltrenaite, I., Skinkyte, R., & Indriulyte, R. (2006). Association of cattle genetic markers with performance traits. Biologija. Vol. 1. P. 24–29.
  27. Boleckova, J., Matejickova, J., Stipkova, M., Kyselova, J., & Barton, L. (2012). The association of five polymorphisms with milk production traits in Czech Fleckvieh cattle. Czech Journal of Animal Science. Vol. 57 (2). P. 45–53. https://doi.org/10.17221/5131-CJAS.
  28. Ishaq, R., Suleman, M., Riaz, M. N., Yousaf, M., Shah, A., & Ghafoor, A. (2012). Prolactin gene polymorphism in Nili-Ravi buffaloes in relation to Sahiwal and Achai Cattle. International Journal of Dairy Technology. Vol. 66 (1). P. 1–5. https://doi.org/10.1111/j.1471-0307.2012.00875.x.
  29. Patel, J. B., & Chauhan, J. B. (2017). Polymorphism of the Prolactin Gene and Its Relationship with Milk Production in Gir and Kankrej Cattle. Journal of Natural Science Biology and Medicine. Vol. 8 (2). P. 167–170. https://doi.org/10.4103/jnsbm.JNSBM_303_16.
  30. Chung, E. R., Rhim, T. J., & Han, S. K. (1996). Associations between PCR-RFLP markers of growth hormone and prolactin genes and production traits in dairy cattle. Korean J Anim Sci. Vol. 38. P. 321–36.
  31. Clempson, A. M., Pollott, G. E., Brickell, J. S., Bourne, N. E., Munce, N., & Wathes, D. C. (2011). Evidence that leptin genotype is associated with fertility, growth, and milk production in Holstein cows. J. Dairy Sci. Vol. 94(7). P. 3618–3628. https://doi.org/10.3168/jds.2010-3626.
  32. Abbas, N., Suleman, M., Zahur, A. B., Ghafoor, A., Rashid, F., Jan, A. U., Akbar, F., Ali, S., Aziz, A., Islam, Z., & Shah, A. (2019). Molecular Analysis of Leptin Gene Polymorphism in Achai, Sahiwal Cattle and Nili-ravi Buffalo Breeds of Pakistan. International Journal of Genetics and Genomics. Vol. 7(3). P. 75–79. https://doi.org/10.11648/j.ijgg.20190703.17.
  33. Ranjan, S., Bhushan, B., Panigrahi, M., Kumar, A., Deb, R., Kumar, P., & Sharma, D. (2015). Association and Expression Analysis of Single Nucleotide Polymorphisms of Partial Tumor Necrosis Factor Alpha Gene with Mastitis in Crossbred Cattle. Animal Biotechnology. Vol. 26 (2). P. 98–104. https://doi.org/10.1080/10495398.2014.929582.