The antibacterial efficacy of ethanol extracts obtained from leaves of some thymus species (lamiaceae) against staphylococcus aureus subsp. aureus strain

DOI: 10.32900/2312-8402-2021-125-18-29

Kurhaluk N.,
Doctor of Biological Sciences,
https://orcid.org/0000-0002-4669-1092,
Tkachenko H.,
Doctor of Biological Sciences,
https://orcid.org/0000-0003-3951-9005,
Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland,
Honcharenko V.,
Ph.D.,
https://orcid.org/0000-0001-6888-2124,
Nachychko V.,
Ph.D.,
https://orcid.org/0000-0001-6756-2823,
Prokopiv A.,
Ph.D.,
https://orcid.org/0000-0003-1690-4090,
Ivan Franko National University of Lviv, Ukraine,
Botanical Garden of National Ivan Franko University of Lviv, Ukraine,
Aksonov Y.,
https://orcid.org/0000-0002-6292-7819,
The Institute of Animal Science NAAS, Kharkiv, Ukraine

Keywords: Thymus species, leaves, ethanol extracts, Staphylococcus aureus subsp. aureus (ATCC® 29213™) strain, antimicrobial activity, agar disk diffusion technique


Abstract

A convincing number of investigations that indicate that thymol with other metabolites exhibited potent antimicrobial, antifungal, antibacterial, and antiparasitic properties prompted us to verify the antibacterial efficacy of four species and one interspecific hybrid of the Thymus genus collected in the western part of Ukraine against Staphylococcus aureus subsp. aureus (ATCC® 29213™) strain. Considering the points highlighted above and based on previous results obtained in our laboratory, in the current study, we decided to evaluate the antimicrobial efficacy of five ethanol extracts obtained from leaves of Thymus representatives against Staphylococcus aureus subsp. aureus (ATCC® 29213™) strain. Fresh leaves were washed, weighed, crushed, and homogenized in 96 % ethanol (in proportion 1:19) at room temperature. The extracts were then filtered and investigated for their antimicrobial activity. Antimicrobial activity was determined using the agar disk diffusion assay. The ethanol extracts obtained from leaves of Thymus plants showed different antibacterial activities against Staphylococcus aureus subsp. aureus (ATCC® 29213™) strain. The antibacterial activity of extracts was greatest for Th. serpyllum followed by Th. pannonicus followed by Th. pulegioides, Th. alpestris, and then by Th. x porcii. Since the antibacterial effectiveness of medicinal plants varies dramatically depending on the phytochemical characteristics of plant families and subfamilies, it is not surprising to note the difference in this efficacy even when using samples taken from the same plant, but from two different regions. The antimicrobial activity of the crude ethanol extracts obtained from leaves of Thymus plants may be attributed to specific compounds or a combination of compounds. The present study lays the basis for future research, to validate the possible use of Thymus species as a candidate in the treatment of infections caused by Staphylococcus aureus in medicine and veterinary.

References

  1. Ballester-Costa, C., Sendra, E., Fernández-López, J., & Viuda-Martos, M. (2016). Evaluation of the antibacterial and antioxidant activities of chitosan edible films incorporated with organic essential oils obtained from four Thymus J. Food Sci. Technol., 53 (8), 3374–3379. https://doi.org/10.1007/s13197-016-2312-y.
  2. Bartolucci, F., Peruzzi, L., & Passalacqua, N. (2013). Typification of names and taxonomic notes within the genus Thymus (Lamiaceae). Taxon, 62 (6), 1308–1314.
  3. Basch, E., Ulbricht, C., Hammerness, P., Bevins, A., & Sollars, D. (2004). Thyme (Thymus vulgaris), thymol. J. Herb Pharmacother., 4 (1), 49–67.
  4. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. J. Clin. Pathol., 45 (4), 493–496.
  5. De Morais, S. M., Vila-Nova, N. S., Bevilaqua, C. M., Rondon, F. C., Lobo, H., De Alencar Araripe Noronha Moura, A., Sales, A. D., Rodrigues, A. P., De Figuereido, J. R., Campello, C. C., Wilson, M. E., & De Andrade, H. F. Jr. (2014). Thymol and eugenol derivatives as potential antileishmanial agents. Bioorg. Med. Chem., 22(21), 6250–6255. https://doi.org/10.1016/j.bmc.2014.08.020.
  6. Felipe, V., Morgante, C. A., Somale, P. S., Varroni, F, Zingaretti, M. L., Bachetti, R. A., Correa, S. G., & Porporatto, C. (2017). Evaluation of the biofilm forming ability and its associated genes in Staphylococcus species isolates from bovine mastitis in Argentinean dairy farms. Pathog., 104, 278–286. https://doi.org/10.1016/j.micpath.2017.01.047.
  7. Honcharenko, V., Tkachenko, H., Nachychko, V., Prokopiv, A., & Osadowski, (2018). The antibacterial activities of some Thymus (Lamiaceae) representatives against Salmonella enteriditis strain locally isolated. Agrobiodiversity for Improving Nutrition, Health, and Life Quality, (2), 212–222. https://doi.org/10.15414/agrobiodiversity.2018.2585-8246.212-222
  8. Honcharenko, V., Tkachenko, H., Osadowski, Z., Nachychko, V., & Prokopiv, (2018). The antibacterial activities of ethanolic extracts obtained from leaves of some Thymus (Lamiaceae) representatives against β-lactamase producing Pseudomonas aeruginosa strain. Słupskie Prace Biologiczne, 15, 59–78.
  9. Honcharenko, V., Tkachenko, H., Prokopiv, A., Nachychko, V., Kurhaluk,, & Osadowski, Z. (2019). Oxidative stress biomarkers in the equine erythrocytes after In Vitro treated with leaf extract obtained from Thymus × porcii Borbás (Lamiaceae). Agrobiodiversity for Improving Nutrition, Health, and Life Quality, (3), 382–393. https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.382-393.
  10. Kavoosi, G., Dadfar, S. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. Food Sci., 78 (2), E 244–250. https://doi.org/10.1111/1750-3841.12015.
  11. Khan, I. A., Abourashed, E. A. (2010). Leung’s Encyclopedia of Common Natural Ingredients Used in Food, Drugs and Cosmetics (3rd), John Wiley and Sons, Inc., Hoboken, NJ, p. 594–597.
  12. Khoury, M., Stien, D., Eparvier, V., Ouaini, N., & El Beyrouthy, M. (2016). Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils. Based Complement. Alternat. Med., 2016, 2547169. https://doi.org/10.1155/2016/2547169.
  13. Kokkini, S., Karousou, R., Hanlidou, E. (2003). HERBS Herbs of the Labiatae, In Encyclopedia of Food Sciences and Nutrition, 2nd, Ed. Caballero B., Oxford: Academic Press. https://doi.org/10.1016/B0-12-227055-X/00593-9
  14. Larcombe, S., Jiang, J. H., Hutton, M. L., Abud, H. E., Peleg, A. Y., & Lyras, D. (2020). A mouse model of Staphylococcus aureus small intestinal infection. Med. Microbiol., 69(2), 290–297. https://doi.org/10.1099/jmm.0.001163.
  15. Leuenberger, A., Sartori, C., Boss, R., Resch, G., Oechslin, F., Steiner, A., Moreillon, P., & Graber, H. U. (2019). Genotypes of Staphylococcus aureus: On-farm epidemiology and the consequences for prevention of intramammary infections. Dairy Sci., 102(4), 3295–3309. https://doi.org/10.3168/jds.2018-15181.
  16. Li, T., Lu, H., Wang, X., Gao, Q., Dai, Y., Shang, J., & Li, M. (2017). Molecular Characteristics of Staphylococcus aureus Causing Bovine Mastitis between 2014 and 2015. Front Cell Infect. Microbiol., 7, 127. https://doi.org/10.3389/fcimb.2017.00127.
  17. Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., Gortzi, O., Izadi, M., & Nabavi, S. M. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem., 210, 402–414. https://doi.org/10.1016/j.foodchem.2016.04.111.
  18. Marino, M., Bersani, C., & Comi, G. (1999). Antimicrobial activity of the essential oils of Thymus vulgaris measured using a bioimpedometric method. J. Food Prot., 62(9), 1017–1023. https://doi.org/10.4315/0362-028x-62.9.1017.
  19. Mathela, C. S., Singh, K. K., & Gupta, V. K. (2010). Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Pol. Pharm., 67(4), 375–380.
  20. Morales, R. (2002). The history, botany and taxonomy of the genus Thymus. In: Stahl-Biskup E., Sáez F. (Eds.) The genus Thymus. Taylor & Francis, London, New York, p. 1–43.
  21. Moumni, S., Elaissi, A., Trabelsi, A., Merghni, A., Chraief, I., Jelassi, B., Chemli, R., & Ferchichi, S. (2020). Correlation between chemical composition and antibacterial activity of some Lamiaceae species essential oils from Tunisia. BMC Complement. Med. Ther., 20(1), 103. https://doi.org/10.1186/s12906-020-02888-6.
  22. Nabavi, S. M., Marchese, A., Izadi, M., Curti, V., Daglia, M., & Nabavi, F. (2015). Plants belonging to the genus Thymus as antibacterial agents: from farm to pharmacy. Food Chem., 173, 339–347. https://doi.org/10.1016/j.foodchem. 2014.10.042.
  23. Nachychko, V. (2014). The genus Thymus (Labiatae Juss.) in the Ukrainian Carpathians’ flora: systematics and taxonomic problems. Visnyk of Lviv University. Biological Series. Lviv, 64, 159–169 [in Ukrainian].
  24. Nachychko, V. O. (2015). Diagnostic features of representatives of Thymus Serpyllum and T. sect. Marginati (Lamiaceae) and guidance for their herborization. The Journal of V. N. Karazin Kharkiv National University. Series: Biology, 25, 77–89.[in Ukrainian].
  25. Nachychko, V. O., Honcharenko, V. I. (2016). Hybrids of Thymus (Lamiaceae) genus in flora of the western regions of Ukraine: taxonomic composition and distribution. Studia Biologica, 10(1), 163–186. [in Ukrainian].
  26. Okoth, D. A., Chenia, H. Y., & Koorbanally, N. A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Lett., 6, 476–481.
  27. Palaniappan, K., Holley, R. A. (2010). Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. J. Food Microbiol., 140 (2–3), 164–168. https://doi.org/10.1016/j.ijfoodmicro.2010.04.001.
  28. Pemmaraju, S. C., Pruthi, P. A., Prasad, & , Pruthi, V. (2013). Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J. Exp. Biol., 51(11), 1032–1037.
  29. Petrović, N. V., Petrović, S. S., Džamić, A. M., Ćirić, A. D., Ristić, M. S., Milovanović, S. L., & Petrović, S. D. (2016). Chemical composition, antioxidant and antimicrobial activity of Thymus praecox supercritical extracts. Supercrit. Fluids, 110, 117–125.
  30. Rivas, L., McDonnell, M. J., Burgess, C. M., O’Brien, M., Navarro-Villa, A., Fanning, S., & Duffy, G. (2010). Inhibition of verocytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol. J. Food Microbiol., 139(1-2), 70–78. https://doi.org/10.1016/j.ijfoodmicro.2010.01.029.
  31. Rota, M. C., Herrera, A., Martínez, R. M., Sotomayor, J. A., & Jordán, M. J. (2008). Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control, 19(7), 681–687.
  32. Schött, G., Liesegang, S., Gaunitz, F., Gleß, A., Basche, S., Hannig, C., & Speer, K. (2017). The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of vulgaris on the bacterial colonization of the in situ pellicle. Fitoterapia, 121, 118–128. https://doi.org/10.1016/j.fitote.2017.07.005.
  33. Sim, J. X. F., Khazandi, M., Chan, W. Y., Trott, D. J., & Deo, P. (2019). Antimicrobial activity of thyme oil, oregano oil, thymol and carvacrol against sensitive and resistant microbial isolates from dogs with otitis externa. Dermatol., 30(6), 524–159. https://doi.org/10.1111/vde.12794.
  34. Sim, L. Y., Abd Rani, N. Z., & Husain, K. (2019). Lamiaceae: An Insight on Their Anti-Allergic Potential and Its Mechanisms of Action. Front Pharmacol., 10, 677. https://doi.org/10.3389/fphar.2019.00677.
  35. Soorni, A., Borna, T., Alemardan, A., Chakrabarti, M., Hunt, A. G., & Bombarely, A. (2019). Transcriptome Landscape Variation in the Genus Thymus. Genes (Basel), 10(8), 620. https://doi.org/10.3390/genes10080620.
  36. Uritu, C. M., Mihai, C. T., Stanciu, G. D., Dodi, G., Alexa-Stratulat, T., Luca, A., Leon-Constantin, M. M., Stefanescu, R., Bild, V., Melnic, S., & Tamba, B. I. (2018). Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review. Pain Res. Manag., 2018, 7801543. https://doi.org/10.1155/2018/7801543.
  37. Xu, J., Zhou, F., Ji, B. P., Pei, R. S., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol., 47(3), 174–179. https://doi.org/1111/j.1472-765X.2008.02407.x.
  38. Zaatout, N., Ayachi, A., & Kecha, M. (2020). Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. Appl. Microbiol., 129 (5), 1102–1119. https://doi.org/10.1111/jam.14706.
  39. Zar, J. H. (1999). Biostatistical Analysis. 4th, Prentice Hall Inc., New Jersey.