Technological approaches for sanitary processing of footwear and clothes of livestock workers

DOI: 10.32900/2312-8402-2021-125-130-140

Paliy A. P.,
Doctor of Veterinary Medicine. Sci., Professor,,
National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine",
Paliy A. P.,
Doctor of Agricultural Sci., docent,,
Ishchenko K. V.,
PhD, docent,,
Kharkiv Petro Vasylenko National Technical University of Agriculture,
Mikhalchenko S. A.,
Doctor of Agricultural Sci., senior scientist,
Kharkiv National Agrarian University named after V. V. Dokuchaev

Keywords: disinfection, method, footwear, clothing, disinfectant, disinfector


 Effective control of the quality and safety of livestock products is possible only with the implementation of a scientifically grounded complex of veterinary and sanitary and general economic measures. The goal of our work was to develop effective ways to sanitize clothing and footwear of workers in the livestock industry. The studies were carried out following the current methodological approaches that are used in agriculture and veterinary medicine. Based on the results of the research carried out, two methods and one device have been developed to ensure a high level of veterinary and sanitary measures in animal husbandry. It has been proven that for the sanitization of clothing of workers in the animal husbandry industry, it is effective to use a disinfectant, which includes the sodium salt of dichloroisocyanuric acid (0.09–0.36%), adipic acid (0.01–0.04%), sodium bicarbonate (0.01–0.04%), sodium carbonate (0.003–0.01%), water (99.887–99.55%) when exposed for 30 minutes. For disinfection of workers’ footwear, it is advisable to use disinfectants filled with a disinfectant that contains dichlorantin (0.021–0.21%), 5,5-dimethylhydantoin (0.0164–0.164%), a dispersant (0.012–0.12%), anionic surfactants (0.005–0.05%), corrosion inhibitor (0.01–0.1%), filler (0.0356–0.356%) and water (99.9–99.0%). An innovative device for cleaning and disinfection is proposed – a shoe disinfector, which consists of a waterproof box with a bottom wider than the top, filled with a disinfectant solution, a branch pipe for removing waste solution, a brush shaft, which is fixed in the upper part of the waterproof box, an electric motor with a rotational speed 2 rev/s., Which serves as a drive shaft brush, control panel with a start button and a stop button. The proposed developments complement the existing regulations on veterinary and sanitary measures at livestock farms and complexes.


  1. Ford, W. B. (1995). Disinfection procedures for personnel and vehicles entering and leaving contaminated premises. Revue scientifique et technique, 14(2), 393–401. DOI: 10.20506/rst.14.2.847
  2. Palii, A. P., & Palii, A. P. (2019). Tehniko-tehnologichni innovacii’ u molochnomu skotarstvi. Monografija. [Technical and technological innovations in dairy farming. Monograph]. Kharkiv : «Mis’kdruk» [in Ukrainian].
  3. Carpenter, W. S., Lee, B. C., Gunderson, P. D., & Stueland, D. T. (2002). Assessment of personal protective equipment use among Midwestern farmers. American Journal of Industrial Medicine, 42(3), 236–247. DOI: 10.1002/ajim.10103
  4. Odo, N. U., Raynor, P. C., Beaudoin, A., Somrongthong, R., Scheftel, J. M., Donahue, J. G., & Bender, J. B. (2015). Personal Protective Equipment Use and Handwashing Among Animal Farmers: A Multi-site Assessment. Journal of Occupational and Environmental Hygiene, 12(6), 363–368. DOI: 10.1080/15459624.2015.1006635
  5. Palii, A. P., Paliy, A. P., Rodionova, K. O., Zolotaryova, S. A., Kushch, L. L., Borovkova, V. M., Kazakov, M. V., Pavlenko, I. S., Kovalchuk, Y. O., Kalabska, V. S., Kovalenko, O. V., Pobirchenko, O. M., & Umrihina, O. S. (2020). Microbial contamination of cow’s milk and operator hygiene. Ukrainian Journal of Ecology, 10(2), 392–397. DOI: 10.15421/2020_113
  6. Sifuentes, L. Y., Gerba, C. P., Weart, I., Engelbrecht, K., & Koenig, D. W. (2013). Microbial contamination of hospital reusable cleaning towels. American Journal of Infection Control, 41(10), 912–915. DOI: 10.1016/j.ajic.2013.01.015
  7. Robertson, I. D. (2020). Disease Control, Prevention and On-Farm Biosecurity: The Role of Veterinary Epidemiology. Engineering, 6(1), 20–25.
  8. Paliy, A. P., Zavgorodniy, A. I., Stegniy, B. T., & Paliy, A. P. (2020). Naukovo-metodychni osnovy kontrolju rozrobky ta zastosuvannja zasobiv dezinfekcii’. Monografija. [Scientific and methodical bases of control of development and application of means of disinfection. Monograph]. Kharkiv : «Mis’kdruk» [in Ukrainian].
  9. Baker, S. W., Prestia, K. A., & Karolewski, B. (2014). Using reduced personal protective equipment in an endemically infected mouse colony. Journal of the American Association for Laboratory Animal Science, 53(3), 273–277.
  10. Allen, K. P., Csida, T., Leming, J., Murray, K., & Thulin, J. (2010). Efficacy of footwear disinfection and shoe cover use in an animal research facility. Lab Animal – Nature, 39(4), 107–111. DOI: 10.1038/laban0410-107
  11. Hickman-Davis, J. M., Nicolaus, M. L., Petty, J. M., Harrison, D. M., & Bergdall, V. K. (2012). Effectiveness of shoe covers for bioexclusion within an animal facility. Journal of the American Association for Laboratory Animal Science, 51(2), 181–188.
  12. Rumpf, S. B., Alsos, I. G., & Ware, C. (2018). Prevention of microbial species introductions to the Arctic: The efficacy of footwear disinfection measures on cruise ships. NeoBiota, 37, 37–49. DOI: 10.3897/neobiota.37.22088
  13. Amass, S. F., Ragland, D., & Spicer, P. (2001). Evaluation of the efficacy of a peroxygen compound, Virkon®S, as a boot bath disinfectant. Journal of Swine Health and Production, 9(3), 121–123.
  14. Tompkins, D. S., Johnson, P., & Fittall, B. R. (1988). Low-temperature washing of patients’ clothing; effects of detergent with disinfectant and a tunnel drier on bacterial survival. Journal of Hospital Infection, 12(1), 51–58. DOI: 10.1016/0195-6701(88)90122-3
  15. Zavgorodniy, A. I., Stegniy, B. T., Paliy, A. P., Gorzheev, V. M., & Smirnov, A. M. (2013). Naukovi ta praktychni aspekty dezinfekcii’ u veterynarnij medycyni. Monografija. [Scientific and practical aspects of disinfection in veterinary medicine. Monograph]. Kharkiv : FOP Brovin O. V. [in Ukrainian].
  16. Chaidez, C., Soto-Beltran, M., Gerba, C. P., & Tamimi, A. H. (2014). Reduction of risk of Salmonella infection from kitchen cleaning clothes by use of sodium hypochlorite disinfectant cleaner. Letters in Applied Microbiology, 59(5), 487–492. DOI: 10.1111/lam.12321
  17. Addie, D. D., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M. C., Hosie, M. J., Lloret, A., Lutz, H., Marsilio, F., Pennisi, M. G., Radford, A. D., Thiry, E., Truyen, U., & Möstl, K. (2015). European Advisory Board on Cat Diseases. Disinfectant choices in veterinary practices, shelters and households: ABCD guidelines on safe and effective disinfection for feline environments. Journal of Feline Medicine and Surgery, 17(7), 594–605.
  18. Palii, А. P., Ulko, Y. S., Bogomolov, O. O., Kis-Korkishchenko, L. V., Kambur, M. D., Zamaziy, A. A., Brit, N. M., Boiko, I. M., Grebnova, I. V., Kovalchuk, Y. O., & Paliy, A. P. (2020). Species composition of microbiota of cows udder and raw milk quality at mastitis. Ukrainian Journal of Ecology, 10(3), 78–85. DOI: 10.15421/2020_171
  19. Davies, R., & Wales, A. (2019). Antimicrobial Resistance on Farms: A Review Including Biosecurity and the Potential Role of Disinfectants in Resistance Selection. Comprehensive Reviews in Food Science and Food Safety, 18(3), 753–774. DOI: 10.1111/1541-4337.12438
  20. Yakubchak, O. M. (2010). Veterynarna dezinfekcija (instrukcija ta metodychni rekomendacii’). [Veterinary disinfection (instructions and methodical recommendations)]. Kyiv : «Kompanija Bioprom» [in Ukrainian].