DOI: 10.32900/2312-8402-2023-130-167-177

Petrash V. V.,
Ph.D. student,,
Tkachova I. V.,
Doctor of Agricultural Sciences, Senior Researcher,,
Livestock farming institute of NAAS of Ukraine

Keywords: dairy cattle, heat stress, technology, milk productivity, milk quality

One of the most vulnerable spheres of human activity to environmental threats is agricultural production, which, on the one hand, is a source of significant emissions of greenhouse gases which is one of the causes of global warming, and, on the other hand, is the most dependent on its consequences. Ukraine has high positions in the world in many sectors of agricultural production. However, environmental threats are able to cause the transformation of the majority of the climatic and agricultural zones of Ukraine and make adjustments to the development of the agricultural sector of production. The consequences of climate change significantly affect agriculture, which is largely dependent on weather and climate conditions, and, accordingly, the country’s food security. The overview of the latest research on the establishment of the main technological and climatic factors affecting the quality of milk was carried out. It has been established that most researchers emphasize such natural factors as breed, seasonal changes of the year, temperature and humidity, age of the cow, stage of lactation and interval between lactations, state of health of the animal and technological factors such as housing conditions, milking technology, fodder and feeding rations, veterinary care. In different countries, cows react differently to heat stress, animals in countries with a hot arid climate with temperatures that exceed the upper critical index for a long time suffer the most. It has been proven that an increase in temperature above the critical temperature leads to oxidative stress of the body, a decrease in the content of dry matter, fat and protein in milk and an increase in somatic cells and microbial contamination of milk. Some researchers associate the predisposition or resistance to heat stress with a genetic component, others with a violation of the conditions of keeping and feeding animals. Thus, the development of further strategic programs to reduce the negative impact of climatic and technological conditions on the production and quality of milk should include breeding programs for creating populations of thermotolerant animals, adaptive technologies that reduce stress, feeding systems with the inclusion of innovative feed products that guarantee a reduction in greenhouse emissions, animal health and food safety.


Al-Ghussain L. (2019). Global warming: Review on driving forces and mitigation. Environ Prog Sustain Energy; 38(1):13-21.

Ataallahi, M., Cheon, S. N., Park, G.-W., Nugrahaeningtyas, E., Jeon, J. H., Park, K.-H. (2023). Assessment of Stress Levels in Lactating Cattle: Analyzing Cortisol Residues in Commercial Milk Products in Relation to the Temperature-Humidity Index. Animals13(15), 2407;

Ayemele A. G., Tilahun M., Lingling S., Elsaadawy S. A., Guo Z., Zhao G., Xu J., Bu D. (2021). Oxidative Stress in Dairy Cows: Insights into the Mechanistic Mode of Actions and Mitigating Strategies. Antioxidants (Basel), № 29, 10(12): 1918. doi:10.3390/antiox10121918

Avendaño-Reyes L., Correa-Calderón A, Macías-Cruz1 U., César García-Casillas A., Mellado M., Robinson P. H., Augusto Hernández-Rivera J. (2021). Impacts on two dairy breeds of adding a third (night) cooling event under extreme ambient heat. Int. J. of Biometeorology, 65:1443-1450. doi:10.1007/s00484-021-02115-y

Batyr R. Yu. (2018). The influence of the frequency of milking on the productivity of cows. Sci. & Tech. bull. IT NAAS, 109: 8-13.

Benavides R. M., Terranova M. V., Duque S. P., Gaona R. C., Guerrero H. S. (2022). Correlations between bulk tank milk analysis with weather conditions in dairy farms under tropical environments. Italian J. of Animal Sci. Vol. 21(1): 217-227.

Borshch O.O. (2021). The influence of global warming on the productivity and quality of cow’s milk. Ukrainian J. of Vet. & Agric. Sci. Vol. 4 № 3 (2021):12-31. doi:10.32718/ujvas4-3.04

Borshch, O. O., Borshch, O. V., Sobolev, O. I., Nadtochii, V. M., Slusar, M. V., Gutyj, B. V., Polishchuk, S. A., Malina, V. V., Korol, A. P., Korol-Bezpala, L. P., Bezpalyi, I. F., & Cherniavskyi, O. O. (2021). Wind speed in easily assembled premises with different design constructions for side curtains in winter. Ukrainian J. of Ecology, 11(1), 325–328.  doi:10.15421/2021_49

Bucheli J., Uldry M. (2022). Heat risks in Swiss milk production. J. Agricultural and Applied Economics Association. Vol. 1(3):197-369. doi:10.1002/jaa2.24

Cassandro, M. (2020). Animal breeding and climate change, mitigation and adaptation. J. Anim. Breed. Genet. 137(2):121-259. doi:10.1111/jbg.12469

Correa-Calderón A., Avendaño-Reyes L., M. López-Baca Á., Macías-Cruz U. (2022). Heat stress in dairy cattle with emphasis on milk production and feed and water intake habits. Review. Revista Мexicana de ciencias pecuarias. Vol. 13, № 2.

Das R, Sailo L, Verma N, Bharti P, Saikia J, Imtiwati, Rakesh Kumar. (2016). Impact of heat stress on health and performance of dairy animals: A review. Vet. World. ; 9: 260–8. doi: 10.14202/vetworld.2016.260-268

David, B., Sahu, Ck., Balakrishna, A. & David, J. (2021). Impact of Climate Change on Milk Production and Milk composition: A Riview. J. Fisheries & Livestock Production, Vol. 9(10):314. doi:10.4172/2332-2608.1000314

Gao S. T., Ma L., Zhou Z., Zhou Z. K., Baumgard H., Jiang D. (2019). Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows. Physiol. Genomics; 2019;51:400-409. doi: 10.1152/physiolgenomics.00039.2019

Gauly,  M.; Ammer, S. (2020). Review: Challenges for dairy cow production systems arising from climate changes. Animal, 14(1):196-203. doi:10.1017/S1751731119003239

Gerun I. W., Sklyar O. I., Musiienko O. V. (2020). The influence of milk production technology on its quality and safety. Bull. of the Sumy National Agrarian University, Series “Veterinary Medicine”, issue 4 (51), 2: 17-22. doi.10.32845/

Gunn, K.M.; Holly, M.A.; Veith, T.L.; Buda, A.R.; Prasad, R.; Alan Rotz, C.; Soder, K.J.; Stoner, A.M.K. (2019). Projected heat stress challenges and abatement opportunities for U.S. Milk production. PLoS ONE, 14, e0214665

Eunjeong Jeon, Seungho Jang, Joon-Mo Yeo, Dong-Wook Kim, Kwanghyun Cho. (2023). Impact of Climate Change and Heat Stress on Milk Production in Korean Holstein Cows: A Large-Scale Data Analysis. Animals, Vol. 13 (18), № 2946; doi:10.3390/ani13182946

Feliciano, R. J., Bou´e, G., Membré J.-M.. (2020). Overview of the Potential Impacts of Climate Change on the Microbial Safety of the Dairy Industry. Foods, 9, 1794; doi:10.3390/foods9121794

Feliciano, R. J., Bou´e, G., Mohssin, F., Hussaini, M. M., Membr´e, J.-M. (2023). Raw milk quality in large-scale farms under hot weather conditions: Learnings from one-year quality control data. J. of Food Composition and Analysis. 117:105127. doi:10.1016/j.jfca.2023.105127

Hayes, E., Wallace, D., O’Donnell, C., Greene, D., Hennessy, D. , O’Shea, N. , Tobin, J. T., Fenelon, M. A. (2023). Trend analysis and prediction of seasonal changes in milk composition from a pasture based dairy research herd. J. Dairy Sci. 106(4):2326-2337. doi:10.3168/jds.2021-21483

Kazmiruk, L. V. (2019). Milk productivity of cows of the Ukrainian black-and-white dairy breed under tethered and untethered conditions. Agrarian Sci. and food Technol. VNAU. Vol. 1 (104). P. 122-126.

Lee, D.; Yoo, D.; Kim, H.; Seo, J. (2023). Negative association between high temperature-humidity index and milk performance and quality in Korean dairy system: Big data analysis. J. Anim. Sci. Technol65, 588. doi:10.5187/jast.2022.e119

Lutsenko, M., Halai, O., Legkoduh, V., Lastovska, I., Borshch, O., & Nadtochii, V. (2021). Milk production process, quality and technological properties of milk for the use of various types of milking machines. Acta Scientiarum. Animal Sci.43(1), e51336. doi:10.4025/actascianimsci.v43i1.51336

Magan, J. B., O’Callaghan, T. F., Kelly, A. L., McCarthy, N. A. (2021). Compositional and functional properties of milk and dairy products derived from cows fed pasture or concentrate-based diets. Compr Rev Food Sci Food Saf. 20(3):2769-2800. doi:10.1111/1541-4337.12751

Marai, I. F. M., Habeeb, A. A. M. (2010). Buffalo’s biological functions as affected by heat stress-A review. J. Livest. Sci., 127: 89-109. doi:10.1016/j.livsci.2009.08.00

Marumo, J. L., Lusseau, D., Speakman, J. R., Mackie, M., & Hambly, C. (2022). Influence of environmental factors and parity on milk yield dynamics in barn-housed dairy cattle. J. of Dairy Sci., 105(2), 1225-1241. doi:10.3168/jds.2021-20698

Min L., Li D., Tong X., Nan X., Ding D., Xu B. (2019). Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: a review. Int. J. Biometeorol.; 63:1283-1302. doi:10.1007/s00484-019-01744-8

Mohammad Ataallahi, Si Nae Cheon, Geun-Woo ParkEska Nugrahaeningtyas, Jung Hwan Jeon, Kyu-Hyun Park. (2023). Assessment of Stress Levels in Lactating Cattle: Analyzing Cortisol Residues in Commercial Milk Products in Relation to the Temperature-Humidity Index. Animals, 13(15), 2407. doi:10.3390/ani13152407

Pacheco-Pappenheim, S., Yener, S., Heck, Jeroen M. L., Dijkstra, J., van Valenberg, Hein J. F. (2021). Seasonal variation in fatty acid and triacylglycerol composition of bovine milk fat. J. Dairy Sci. 104:8479-8492. doi:10.3168/jds.2020-19856

Picinin, L. C. A.; Bordignon-Luiz1, M. T.; Cerqueira, M. M. O. P.; Toaldo, I. M.; Souza, F. N.; Leite, M. O.; Fonseca, L. M.; Lana, A. M. Q. (2019). Effect of seasonal conditions and milk management practices on bulk milk quality in Minas Gerais State – Brazil. Animal Sci. and Technol. and Inspection of Animal Products. Arq. Bras. Med. Vet. Zootec, 71(04): 1355-1363. doi:10.1590/1678-4162-10063

Piddubna L. M., Zakharchuk L. V., Korniichuk D. O. (2021). Assessment of the influence of a complex of factors on milk productivity of cows. Bull. of the Sumy National Agrarian University, Series “Livestock”, iss. 2 (45): 113-120.

Polishchuk T. V. (2019). Interrelationship and variability of indicators of milk productivity and reproductive capacity of cows depending on lactation. Agrarian science and food technology VNAU. Vinnytsia, Iss. 1 (104): 132-145;

Quiédeville S, Grovermann C, Leiber F, Cozzi G, Lora I, Eory V, Moakes S (2022). Influence of climate stress on technical efficiency and economic downside risk exposure of EU dairy farms. J. Agricultural Sci., 160, 289-301; doi:10.1017/S0021859622000375

Rahman, M.A., A. Saboor, G. Hameed, G. Bilal and F. Tanwir. (2019). Climate change related factors impacting dairy production in Pakistan. Pakistan J. of Agricultural Research, 32(4): 691-705; doi:10.17582/journal.pjar/2019/32.4.691.705

Razanova E. P., Golubenko T. L. (2021). The effect of milking frequency and methods of maintenance during parturition on the productivity of cows. Actual problems of intensive development of animal husbandry, Iss. 24, Part 2: 194-200.

Razzaghi, A.; Ghaffari, M. H.; Rico, D. E. (2022). The impact of environmental and nutritional stresses on milk fat synthesis in dairy cows. Domest. Anim. Endocrinol.83, 106784; doi:10.1016/j.domaniend.2022.106784

Sediuk, I., Prusova, G., Tkachov, A., Petrash, V., Tkachova, I. (2023). High yielding cows metabolism peculiarities under climate change conditions with the use of feed additive with protein protected from rumen degradation. Scientific Horizons, 26(9), 52-60; doi: 10.48077/scihor9.2023.52

Sigdel A., Abdollahl-Arpanahl R., Aguilar I., Peñagaricano F. (2019). Whole genome mapping reveals novel genes and pathways involved in milk production under heat stress in US Holstein cows. Front Genet.; 10:928. doi:10.3389/fgene.2019.00928

Silpa, M. V., König, S., Sejian, V., Malik, P. K., Nair, M. R. R., Fonseca, V. F. C., Maia, A. S. C. and Bhatta, R. (2021). Climate-Resilient Dairy Cattle Production: Applications of Genomic Tools and Statistical Models. Front. Vet. Sci., 8:625189. doi:10.3389/fvets.2021.625189

Skoromna O. I., Razanova O. P., Polishchuk T. V., Shevchuk T. V., Paladiychuk O. R., Bernyk I. M. (2020). Development of scientifically based measures to increase the productivity of dairy cows and improve the quality of raw materials due to innovations and research in production conditions: Monograph. VNAU: 174 p.

Tančin V., Mikláš Š., Uhrinčať M., Mačuhová L. (2020). Factors affecting raw milk quality of dairy cows under practical conditions. Potravinarstvo Slovak J. of food Sci. Vol.; 14;

Tao S., Orellana Rivas R. M., Marins T. N., Chen Y. C., Gao J., Bernard J. K. (2020). Impact of heat stress on lactational performance of dairy cows. Theriogenology; 150:437-444; doi:10.1016/j.theriogenology.2020.02.048

Toghdory, A. , Ghoorchi, T., Asadi, M., Bokharaeian, M., Najaf, M., Nejad, J. G. (2022). Effects of Environmental Temperature and Humidity on Milk Composition, Microbial Load, and Somatic Cells in Milk of Holstein Dairy Cows in the Northeast Regions of Iran. Animals, 12(18), 2484; doi:10.3390/ani12182484

Varpikhovsky R. L. (2019). The influence of the milking regime on the composition and properties of milk of cows of the Ukrainian black and spotted dairy breed. Agrarian Sci. and food Technol., Iss. 4 (103): 83-89; aMtQPGHM9m1MbaqhcAuJ.pdf

Vieira R. K. R., Rodrigues M., Silva Santos P.K., Medeiros N.B.C., Cândido E.P., Rodrigues M.D.N. (2022). Risk factors associated with the bovine subclinical mastitis in an Amazon micro-region. Tropical Animal Health and Production, 54(6):356; doi:10.1007/s11250-022-03354-w

Voitenko, S., Karunna, T., Shaferivsky, B., & Zheliznyak, I. (2019). Influence of genotypic and paratype factors on realization of dairy productivity of cows. Bull. of Sumy National Agrarian University. The Series: Livestock, (1-2(36-37), 21-26; doi.10.32845/bsnau.lvst.2019.1-2.3

Voytenko S. L., Zheliznyak I. M., Karunna T. I., Shaferivskyi B. S. (2020). The most significant influencing factors on the formation and realization of milk productivity of cows. Bull. of the Poltava State Agrarian Acad.. No. 1. P. 140-147; doi:10.31210/visnyk2020.01.16

Zolotarov A., Rodionova,  K., Кhimych,  M., Vyrvykyshka,  S., & Khokhlov,  A. (2023). Ways to reduce the impact of the external environment in summer on the milk productivity of cows. S. Scientific Horizons, Vol. 26, No. 4: 9-20; doi:10.48077/scihor4.2023.09