SANITATION OF AIR IN LIVESTOCK FACILITIES

DOI: 10.32900/2312-8402-2024-132-219-230

Anatoliy PALIY,
DVetSc.,
professor,
https://orcid.org/0000-0002-9193-3548,
Oleksandr BILOIVAN,
CandVetSc.,
https://orcid.org/0000-0002-9973-4551,
National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, Kharkiv, Ukraine,
Stepan MICHALCHENKO,
DAgSc.,
professor,
https://orcid.org/0000-0003-3679-073X,
Ihor KORKH,
CandAgSc.,
senior researcher,
https://orcid.org/0000-0002-8077-895X,
Livestock farming institute of NAAS of Ukraine, Kharkiv, Ukraine,
Olena PAVLICHENKO,
DLawSc.,
professor,
https://orcid.org/0000-0002-6577-6577,
State Biotechnological University, Kharkiv, Ukraine

Keywords: facilities, air, device, disinfection, disinfectant


The health of productive animals is directly dependent on their housing conditions and utilization. The environment of livestock biocenoses must comply with current standards and be safe from a sanitary standpoint. Achieving this is only possible with the implementation of highly efficient disinfection technologies in production. A pressing issue today remains the development of innovative devices and methods for air decontamination in livestock facilities. Device construction was based on the results of patent research and a comparative analysis of existing analogs and prototypes. The effectiveness of disinfectants was assessed in accordance with applicable regulatory documents. As a result of the work carried out, a device was developed for air purification in livestock facilities. It features two-stage biological-droplet filters, sedimentation chambers, water supply regulation valves, water recirculation pipeline systems, and systems for water supply and drainage. A device for air sanitation in livestock facilities was also developed, which provides simultaneous air ionization and ultraviolet irradiation. This device includes a source of ultraviolet radiation and a water drainage and purification system for processed water. Additionally, methods for deodorization, aerosol disinfection, and fumigation of the air environment in livestock facilities were created. These methods involve the use of innovative disinfectants from various chemical groups under appropriate application regimes. They meet modern requirements for livestock management and are effective, environmentally safe, economical, and easy to use. The prospect of further research lies in improving technological approaches to decontaminating livestock environments.

References

Addie, D. D., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M. C., Hosie, M. J., Lloret, A., Lutz, H., Marsilio, F., Pennisi, M. G., Radford, A. D., Thiry, E., Truyen, U., Möstl, K. (2015). European advisory board on cat diseases. Disinfectant choices in veterinary practices, shelters and households: ABCD guidelines on safe and effective disinfection for feline environments. Journal of Feline Medicine and Surgery. 17(7). 594-605. https://doi.org/10.1177/1098612X15588450

Artasensi, A., Mazzotta, S., Fumagalli, L. (2021). Back to basics: choosing the appropriate surface disinfectant. Antibiotics (Basel). 10(6). 613. https://doi.org/10.3390/antibiotics10060613

Cao, T., Zheng, Y., Dong, H. (2023). Control of odor emissions from livestock farms: A review. Environmental Research. 225. 115545. doi: 10.1016/j.envres.2023.115545

Campagna, M. V., Faure-Kumar, E., Treger, J. A., Cushman, J. D., Grogan, T. R., Kasahara, N., Lawson, G. W. (2016). Factors in the selection of surface disinfectants for use in a laboratory animal setting. JAALAS. 55(2). 175-188.

Connor, J. T. O., Clegg, T. A., More, S. J. (2017). Efficacy of washing and disinfection in cattle markets in Ireland. Irish Veterinary Journal. 70. 6(2017). https://doi.org/10.1186/s13620-017-0081-1

Curran, E. T., Wilkinson, M., Bradley, T. (2019). Chemical disinfectants: Controversies regarding their use in low risk healthcare environments (part 1). Journal of Infection Prevention. 20(2). 76-82. https://doi.org/10.1177/1757177419828139

Dallago, G. M., Wade, K. M., Cue, R. I., McClure, J. T., Lacroix, R., Pellerin, D., Vasseur, E. (2021). Keeping dairy cows for longer: A critical literature review on dairy cow longevity in high milk-producing countries. Animals (Basel). 11(3). 808. https://doi.org/10.3390/ani11030808

Frentzel, H., Menrath, A., Tomuzia, K., Braeunig, J., Appel, B. (2013). Decontamination of high-risk animal and zoonotic pathogens. Biosecur Bioterror. 11(Suppl 1). S102-14. https://doi.org/10.1089/bsp.2012.0069

Hou, R., Li, X., Pan, Y., Zhao, X., Ping, J. (2024). A high-efficiency, self-sustainable livestock barn air purification system. Nano Energy. 124. 109469. https://doi.org/10.1016/j.nanoen.2024.109469

Jiang, L., Li, M., Tang, J., Zhao, X., Zhang, J., Zhu, H., Yu, X., Li, Y., Feng, T., Zhang, X. (2018). Effect of different disinfectants on bacterial aerosol diversity in poultry houses. Frontiers in Microbiology. 9. 2113 https://doi.org/10.3389/fmicb.2018.02113

Kim, S., Chung, H., Lee, H., Myung, D., Choi, K., Kim, S., Htet, S. L., Jeong, W., Choe, N. (2020). Evaluation of the disinfectant concentration used on livestock facilities in Korea during dual outbreak of foot and mouth disease and high pathogenic avian influenza. Journal of Veterinary Science. 21(3). e34. https://doi.org/10.4142/jvs.2020.21.e34

Kovalenko, V. L. (2014). Methods for controlling disinfectants. Handbook. Kyiv. 159 p.

Li, Q., Liu, L., Guo, A., Zhang, X., Liu, W., Ruan, Y. (2021). Formation of multispecies biofilms and their resistance to disinfectants in food processing environments: A review. Journal of Food Protection. 84(12). 2071-2083. https://doi.org/10.4315/JFP-21-071

Ma, H., Li, F., Niyitanga, E., Chai, X., Wang, S., Liu, Y. (2021). The odor release regularity of livestock and poultry manure and the screening of deodorizing strains. Microorganisms. 9(12). 2488. https://doi.org/10.3390/microorganisms9122488

Memarzadeh, F. (2021). A review of recent evidence for utilizing ultraviolet irradiation technology to disinfect both indoor air and surfaces. Applied Biosafety. 26(1). 52-56. https://doi.org/10.1089/apb.20.0056

Moje, N., Waktole, H., Kassahun, R., Megersa, B., Chomen, M. T., Leta, S., Debela, M., Amenu, K. (2023). Status of animal health biosecurity measures of dairy farms in urban and peri-urban areas of central Ethiopia. Frontiers in Veterinary Science. 10. 1086702. https://doi.org/10.3389/fvets.2023.1086702

Paliy, A. P. (2018). Differential sensitivity of mycobacterium to chlorine disinfectants. Mikrobiolohichnyi Zhurnal. 80(2). 104-116. https://doi.org/10.15407/microbiolj80.02.104

Paliy, A. P., Sumakova, N. V., Mashkey, A. M., Petrov, R. V., Paliy, A. P., Ishchenko, K. V. (2018). Contamination of animal-keeping premises with eggs of parasitic worms. Biosystems Diversity. 26(4). 327-333. https://doi.org/10.15421/011849

Paliy, A., Zavgorodnii, A., Rodionova, K., Borovkov, S., Pavlichenko, O., Dubin, R., Ihnatieva, T. (2024). Resistance of different types of nontuberculos mycobacteria to aldehyde disinfectants. Veterinarski Arhiv. 94(6). 499-512. https://doi.org/10.24099/vet.arhiv.2515

Reed, N. G. (2010). The history of ultraviolet germicidal irradiation for air disinfection. Public Health Reports. 125(1). 15-27. https://doi.org/10.1177/003335491012500105

Scheib, S., Leimbach, S., Avramidis, G., Bellmann, M., Nitz, J., Ochs, C., Tellen, A., Wente, N., Zhang, Y., Viöl, W., Krömker, V. (2023). Intermediate cluster disinfection: which disinfection solution is most effective on milking liners? A comparison of microorganism reduction on liner inner surfaces using quantitative swab sampling technique. Pathogens. 12(4). 560. https://doi.org/10.3390/pathogens12040560

Shkromada, O., Skliar, O., Paliy, A., Ulko, L., Gerun, I., Naumenko, О., Ishchenko, K., Kysterna, O., Musiienko, O., Paliy, A. (2019). Development of measures to improve milk quality and safety during production. Eastern-European Journal of Enterprise Technologies. 3/11(99). 30-39. https://doi.org/10.15587/1729-4061.2019.168762

Souza, C., Mota, H. F., Faria, Y. V., Cabral, F. O., Oliveira, D. R., Sant’Anna, L. O., Nagao, P. E., Santos, C. D. S., Moreira, L. O., Mattos-Guaraldi, A. L. (2020). Resistance to antiseptics and disinfectants of planktonic and biofilm-associated forms of Corynebacterium striatum. Microbial Drug Resistance. 26(12). 1546-1558. https://doi.org/10.1089/mdr.2019.0124

Sun, Y., Wu, Q., Liu, J., Wang, Q. (2023). Effectiveness of ultraviolet-C disinfection systems for reduction of multi-drug resistant organism infections in healthcare settings: A systematic review and meta-analysis. Epidemiology and Infection. 151. e149. https://doi.org/10.1017/S0950268823001371

Tyski, S., Bocian, E., Laudy, A. E. (2024). Animal health protection – assessing antimicrobial activity of veterinary disinfectants and antiseptics and their compliance with european standards: A narrative review. Polish Journal of Microbiology. 73(4). 413-431. https://doi.org/10.33073/pjm-2024-043.

Ventura, G., Lorenzi, V., Mazza, F., Clemente, G. A., Iacomino, C., Bertocchi, L., Fusi, F. (2021). Best farming practices for the welfare of dairy cows, heifers and calves. Animals (Basel). 11(9). 2645. https://doi.org/10.3390/ani11092645

Vijayan, V. K., Paramesh, H., Salvi, S. S., Dalal, A. A. (2015). Enhancing indoor air quality – The air filter advantage. Lung India. 32(5). 473-479. https://doi.org/10.4103/0970-2113.164174

Wang, Y. C., Han, M. F., Jia, T. P., Hu, X. R., Zhu, H. Q., Tong, Z., Lin, Y. T., Wang, C., Liu, D. Z., Peng, Y. Z., Wang, G., Meng, J., Zhai, Z. X., Zhang, Y., Deng, J. G., His, H. C. (2021). Emissions, measurement, and control of odor in livestock farms: A review. The Science of the Total Environment. 776. 145735. https://doi.org/10.1016/j.scitotenv.2021.145735

Wenke, C., Pospiech, J., Reutter, T., Altmann, B., Truyen, U., Speck, S. (2018). Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm. PLoS One. 13(3). e0194641. https://doi.org/10.1371/journal.pone.0194641