DOI: 10.32900/2312-8402-2023-130-231-243

Tkaczenko Halina,
Doctor of Biological Sciences,
Kurhaluk Natalia,
Doctor of Biological Sciences,
Institute of Biology, Pomeranian University in Słupsk,
Grudniewska Joanna,
Department of Salmonid Research, Stanisław Sakowicz Inland Fisheries Institute,
Rutki, Żukowo, Poland

Keywords: β-glucans, lipid peroxidation, oxidatively modified proteins, total antioxidant capacity, liver, heart, Oncorhynchus mykiss

Treatment with β-glucans has been found to stimulate various aspects of immune responses such as resistance to infections and resistance to environmental stress. The effects of dietary β-glucans on the general health status of rainbow trout, as well as oxidative stress biomarkers in different tissues specifically should be explored. This prompted us to investigate the effects of dietary yeast β-1,3/1,6-D-glucans supplemented for a 14-day feeding period on liver and heart function and the oxidative mechanisms underlying these effects. We assessed the levels of lipid peroxidation, derivatives of the oxidatively modified proteins (OMP), and the total antioxidant capacity (TAC) in the hepatic and cardiac tissue of rainbow trout (Oncorhynchus mykiss Walbaum) after a 14-day period of oral supplementation with β-glucans. Thirty healthy rainbow trout weighing 55.9 ± 2.1 g were used in the experiments. The fish were fed with a commercial basal diet at a rate of 1.5% body weight four times a day. After acclimation, the fish were randomly divided into two groups. The groups were fed for 14 days as follows: the control group comprising rainbow trout (n = 15) received a control basal diet and the β-glucan group (n = 15) was fed with the Yestimun® food product at a dose of 1% of the basal feed (with 85% of β-1.3/1.6-glucans, Leiber GmbH, Bramsche, Germany). The basal feed was supplemented with 1% of Yestimun® powder (dose: 1 kg per 99 kg, w/w). This insoluble and highly purified preparation contains natural polysaccharides, e.g. β-1,3/1,6-D-glucans derived from Spent Brewers’ Yeast (Saccharomyces cerevisiae). Yeast cell walls typically contain approximately 30% of β-glucans of dry weight. Our results showed that feeding with low doses of β-glucans induced a statistically non-significant decrease in TBARS levels in the hepatic and cardiac tissues of rainbow trout. The feeding with low doses of β-glucans induced non-significant changes in the TAC levels both in the hepatic and cardiac tissues of rainbow trout. Levels of aldehydic and ketonic derivatives of OMP in the cardiac and hepatic tissues of rainbow trout fed the β-glucan-supplemented diet were at the same levels as in the untreated controls. In conclusion, our results unambiguously showed that β-glucan did not induce oxidative stress in the hepatic and cardiac tissues of rainbow trout.


Abbasi, A., Rahbar Saadat, T., & Rahbar Saadat, Y. (2022). Microbial exopolysaccharides-β-glucans-as promising postbiotic candidates in vaccine adjuvants. International journal of biological macromolecules, 223(Pt A), 346–361. https://doi.org/10.1016/j.ijbiomac.2022.11.003.

Akhtar, M. S., Tripathi, P. H., Pandey, A., & Ciji, A. (2021). β-glucan modulates non-specific immune gene expression, thermal tolerance and elicits disease resistance in endangered Tor putitora fry challenged with Aeromonas salmonicida. Fish & shellfish immunology, 119, 154–162. https://doi.org/10.1016/j.fsi.2021.09.038.

Assefa, A., & Abunna, F. (2018). Maintenance of Fish Health in Aquaculture: Review of Epidemiological Approaches for Prevention and Control of Infectious Disease of Fish. Veterinary medicine international, 2018, 5432497. https://doi.org/10.1155/2018/5432497.

Barton, C., Vigor, K., Scott, R., Jones, P., Lentfer, H., Bax, H. J., Josephs, D. H., Karagiannis, S. N., & Spicer, J. F. (2016). Beta-glucan contamination of pharmaceutical products: How much should we accept?. Cancer immunology, immunotherapy: CII, 65(11), 1289–1301. https://doi.org/10.1007/s00262-016-1875-9.

Chan, G. C., Chan, W. K., & Sze, D. M. (2009). The effects of beta-glucan on human immune and cancer cells. Journal of hematology & oncology, 2, 25. https://doi.org/10.1186/1756-8722-2-25.

Ciecierska, A., Drywień, M. E., Hamulka, J., & Sadkowski, T. (2019). Nutraceutical functions of beta-glucans in human nutrition. Roczniki Panstwowego Zakladu Higieny, 70(4), 315–324. https://doi.org/10.32394/rpzh.2019.0082.

Ciji, A., Tripathi, P. H., Pandey, A., & Akhtar, M. S. (2023). Expression of genes encoding non-specific immunity, anti-oxidative status and aquaporins in β-glucan-fed golden mahseer (Tor putitora) juveniles under ammonia stress. Fish and shellfish immunology reports, 4, 100100. https://doi.org/10.1016/j.fsirep.2023.100100.

Colaço, M., Panão Costa, J., & Borges, O. (2022). Glucan Particles: Choosing the Appropriate Size to Use as a Vaccine Adjuvant. Methods in molecular biology (Clifton, N.J.), 2412, 269–280. https://doi.org/10.1007/978-1-0716-1892-9_13.

Cornet, V., Khuyen, T. D., Mandiki, S. N. M., Betoulle, S., Bossier, P., Reyes-López, F. E., Tort, L., & Kestemont, P. (2021). GAS1: A New β-Glucan Immunostimulant Candidate to Increase Rainbow Trout (Oncorhynchus mykiss) Resistance to Bacterial Infections With Aeromonas salmonicida achromogenes. Frontiers in immunology, 12, 693613. https://doi.org/10.3389/fimmu.2021.693613.

Dalonso, N., Goldman, G. H., & Gern, R. M. (2015). β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons. Applied microbiology and biotechnology, 99(19), 7893–7906. https://doi.org/10.1007/s00253-015-6849-x.

Do Huu, H., Sang, H. M., & Thanh Thuy, N. T. (2016). Dietary β-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish & shellfish immunology, 54, 402–410. https://doi.org/10.1016/j.fsi.2016.03.161.

Dubinina, E. E., Burmistrov, S. O., Khodov, D. A., & Porotov, I. G. (1995). Okislitel’naia modifikatsiia belkov syvorotki krovi cheloveka, metod ee opredeleniia [Oxidative modification of human serum proteins. A method of determining it]. Voprosy meditsinskoi khimii, 41(1), 24–26.

Edwards J. E. (2012). Fungal cell wall vaccines: an update. Journal of medical microbiology, 61(Pt 7), 895–903. https://doi.org/10.1099/jmm.0.041665-0.

Galaktionova, L. P., Molchanov, A. V., El’chaninova, S. A., & Varshavskiĭ, B. I.a (1998). Sostoianie perekisnogo okisleniia u bol’nykh s iazvennoĭ bolezn’iu zheludka i dvenadtsatiperstnoĭ kishki [Lipid peroxidation in patients with gastric and duodenal peptic ulcers]. Klinicheskaia laboratornaia diagnostika, (6), 10–14.

Gaschler, M. M., & Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochemical and biophysical research communications, 482(3), 419–425. https://doi.org/10.1016/j.bbrc.2016.10.086.

Gaweł, S., Wardas, M., Niedworok, E., & Wardas, P. (2004). Dialdehyd malonowy (MDA) jako wskaźnik procesów peroksydacji lipidów w organizmie [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiadomosci lekarskie (Warsaw, Poland: 1960), 57(9-10), 453–455.

Han, B., Baruah, K., Cox, E., Vanrompay, D., & Bossier, P. (2020). Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review. Frontiers in immunology, 11, 658. https://doi.org/10.3389/fimmu.2020.00658.

Hawkins, C. L., & Davies, M. J. (2019). Detection, identification, and quantification of oxidative protein modifications. The Journal of biological chemistry, 294(51), 19683–19708. https://doi.org/10.1074/jbc.REV119.006217.

Huang, H., Ostroff, G. R., Lee, C. K., Specht, C. A., & Levitz, S. M. (2013). Characterization and optimization of the glucan particle-based vaccine platform. Clinical and vaccine immunology: CVI, 20(10), 1585–1591. https://doi.org/10.1128/CVI.00463-13.

Kamyshnikov, V.S. (2004). A reference book on the clinic and biochemical research and laboratory diagnostics. MEDpress-inform, Moscow.

Kazuń, B., Małaczewska, J., Kazuń, K., Kamiński, R., Adamek-Urbańska, D., & Żylińska-Urban, J. (2020). Dietary administration of β-1,3/1,6-glucan and Lactobacillus plantarum improves innate immune response and increases the number of intestine immune cells in roach (Rutilus rutilus). BMC veterinary research, 16(1), 216. https://doi.org/10.1186/s12917-020-02432-1

Kehm, R., Baldensperger, T., Raupbach, J., & Höhn, A. (2021). Protein oxidation – Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox biology, 42, 101901. https://doi.org/10.1016/j.redox.2021.101901

Koch, J. F. A., de Oliveira, C. A. F., & Zanuzzo, F. S. (2021). Dietary β-glucan (MacroGard®) improves innate immune responses and disease resistance in Nile tilapia regardless of the administration period. Fish & shellfish immunology, 112, 56–63. https://doi.org/10.1016/j.fsi.2021.02.014

Lefèvre, G., Beljean-Leymarie, M., Beyerle, F., Bonnefont-Rousselot, D., Cristol, J. P., Thérond, P., & Torreilles, J. (1998). Evaluation de la peroxydation lipidique par le dosage des substances réagissant avec l’acide thiobarbiturique [Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances]. Annales de biologie clinique, 56(3), 305–319.

Lehtovaara, B. C., & Gu, F. X. (2011). Pharmacological, structural, and drug delivery properties and applications of 1,3-β-glucans. Journal of agricultural and food chemistry, 59(13), 6813–6828. https://doi.org/10.1021/jf200964u

Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., & Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in enzymology, 186, 464–478. https://doi.org/10.1016/0076-6879(90)86141-h.

Liu, Y., Wu, Q., Wu, X., Algharib, S. A., Gong, F., Hu, J., Luo, W., Zhou, M., Pan, Y., Yan, Y., & Wang, Y. (2021). Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. International journal of biological macromolecules, 173, 445–456. https://doi.org/10.1016/j.ijbiomac.2021.01.125.

Meena, D. K., Das, P., Kumar, S., Mandal, S. C., Prusty, A. K., Singh, S. K., Akhtar, M. S., Behera, B. K., Kumar, K., Pal, A. K., & Mukherjee, S. C. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish physiology and biochemistry, 39(3), 431–457. https://doi.org/10.1007/s10695-012-9710-5.

Mirończuk-Chodakowska, I., Kujawowicz, K., & Witkowska, A. M. (2021). Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients, 13(11), 3960. https://doi.org/10.3390/nu13113960.

Nakashima, A., Yamada, K., Iwata, O., Sugimoto, R., Atsuji, K., Ogawa, T., Ishibashi-Ohgo, N., & Suzuki, K. (2018). β-Glucan in Foods and Its Physiological Functions. Journal of nutritional science and vitaminology, 64(1), 8–17. https://doi.org/10.3177/jnsv.64.8.

Rubio, C. P., Hernández-Ruiz, J., Martinez-Subiela, S., Tvarijonaviciute, A., & Ceron, J. J. (2016). Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC veterinary research, 12(1), 166. https://doi.org/10.1186/s12917-016-0792-7.

Sabioni, R. E., Zanuzzo, F. S., Gimbo, R. Y., & Urbinati, E. C. (2020). β-Glucan enhances respiratory activity of leukocytes suppressed by stress and modulates blood glucose levels in pacu (Piaractus mesopotamicus). Fish physiology and biochemistry, 46(2), 629–640. https://doi.org/10.1007/s10695-019-00739-x.

Singh, R. P., & Bhardwaj, A. (2023). β-glucans: a potential source for maintaining gut microbiota and the immune system. Frontiers in nutrition, 10, 1143682. https://doi.org/10.3389/fnut.2023.1143682.

Soto, E. R., Caras, A. C., Kut, L. C., Castle, M. K., & Ostroff, G. R. (2012). Glucan particles for macrophage targeted delivery of nanoparticles. Journal of drug delivery, 2012, 143524. https://doi.org/10.1155/2012/143524.

Squier T. C. (2001). Oxidative stress and protein aggregation during biological aging. Experimental gerontology, 36(9), 1539–1550. https://doi.org/10.1016/s0531-5565(01)00139-5.

Squier, T. C., & Bigelow, D. J. (2000). Protein oxidation and age-dependent alterations in calcium homeostasis. Frontiers in bioscience: a journal and virtual library, 5, D504–D526. https://doi.org/10.2741/squire.

Stadtman E. R. (2001). Protein oxidation in aging and age-related diseases. Annals of the New York Academy of Sciences, 928, 22–38. https://doi.org/10.1111/j.1749-6632.2001.tb05632.x.

Stier, H., Ebbeskotte, V., & Gruenwald, J. (2014). Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition journal, 13, 38. https://doi.org/10.1186/1475-2891-13-38.

Tkachenko H., Kurhaluk N., Grudniewska J. 2023. Effects of dietary yeast β-1.3/1.6-glucans on lipid peroxidation in the hepatic and cardiac tissues of rainbow trout (Oncorhynchus mykiss Walbaum), European whitefish (Coregonus lavaretus L.), and grayling (Thymallus thymallus L.). Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine, 129, 16-25. https://doi.org/10.32900/2312-8402-2023-129-16-25.

van Ginkel, G., & Sevanian, A. (1994). Lipid peroxidation-induced membrane structural alterations. Methods in enzymology, 233, 273–288. https://doi.org/10.1016/s0076-6879(94)33031-x.

Vannucci, L., Krizan, J., Sima, P., Stakheev, D., Caja, F., Rajsiglova, L., Horak, V., & Saieh, M. (2013). Immunostimulatory properties and antitumor activities of glucans (Review). International journal of oncology, 43(2), 357–364. https://doi.org/10.3892/ijo.2013.1974.

Zar, J.H. (1999). Biostatistical Analysis. 4th ed., Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Zeng, L., Wang, Y. H., Ai, C. X., & Zhang, J. S. (2018). Differential effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker Larimichthys crocea under acute copper stress. Ecotoxicology and environmental safety, 165, 78–87. https://doi.org/10.1016/j.ecoenv.2018.08.098.

Zhong, X., Wang, G., Li, F., Fang, S., Zhou, S., Ishiwata, A., Tonevitsky, A. G., Shkurnikov, M., Cai, H., & Ding, F. (2023). Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics, 15(6), 1615. https://doi.org/10.3390/pharmaceutics15061615.