DOI: 10.32900/2312-8402-2025-133-146-161
Keywords: chickpea, seed inoculation, foliar feeding, mineral fertilizers, photosynthesis, yield
Increasing the gross yield of chickpea seeds as a source of highly nutritious vegetable protein is one of the important aspects of ensuring national food security and nutrition of the population. The experiment to determine the effect of biological product based on nitrogen-fixing microorganisms, different doses of NPK, boron-containing fertilizer and their combinations on the formation of chickpea productivity was conducted in field conditions of a two-factor experiment in the conditions of the state enterprise “Experimental farm “Stepne” of the Institute of Pig Breeding and Agricultural Research of the NAAS” during 2023–2024. The results of the study showed that improving the nutritional regime of chickpea plants by inoculating seeds with a microbiological preparation based on nitrogen-fixing microorganisms, applying different doses of mineral fertilizers, foliar application of chickpea in the budding phase with microfertilizers and their combination improved the conditions for the formation of the leaf surface of plants and contributed to the extension of the duration of the period of its stay in an active state. Accordingly, the amount of absolutely dry aboveground mass accumulated by plants and the mass of seeds formed in beans increased. The most effective in this regard was the complex use of the microbiological preparation Anderiz (3.9 l/t) for pre-sowing inoculation of seeds and foliar application of crops with microfertilizer SmartGrow Bor-150 (1.5 l/ha) against the background of N15P60K60 application, which, along with the highest values of the photosynthetic activity of plants in crops, ensured the yield of chickpea seeds at the level of 2.56 t/ha.
References
Abdel-Motagally, F.M.F., & El-Zohri, M. (2016). Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. Journal of the Saudi Society of Agricultural Sciences, 17 (2), 178-185. https://doi.org/10.1016/j.jssas.2016.03.005
Ali, H., Khan, M.A. & Randhawa, S.A. (2004). Interactive effect of seed inoculation and phosphorus application on growth and yield of chickpea (Cicer arietinum L.). International Journal of Agriculture & Biology, 6, 110-112.
Begum, N., Khan, Q.U., Liu, L.G., Li, W., Liu, D. & Haq, I.U. (2023) Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Frontiers in Nutrition, 10, 1218468. https://doi.org/10.3389/fnut.2023.1218468
Çakor, Ö., Uçarlo, C., Tarhan, Ç., Pekmez, M., & Tyrgut-Kara, N. (2019). Nutritional and health benefits of legumes and their distinctive genomic properties. Food Science and Technology, 39(1), 1-12. https://doi.org/10.1590/fst.42117
Chemining wa, G. N., & Vessey, J. K. (2006). The abundance and efficacy of Rhizobium leguminosarum bv. viciae in cultivated soils of eastern Canadian prairie. Soil Biology and Biochemistry, 38, 294-302.
Domínguez-Ferreras, A., Muñoz, S., Olivares, J., Soto, M.J., & Sanjuan, J. (2009). Role of potassium uptake systems in Sinorhizobium melilotу osmoadaptation and symbiotic performance. Journal of Bacteriology, 191, 2133–2143. https://doi.org/10.1128/jb.01567-08
Dutta, D. & Bandyopadhyay, P. (2009) Performance of chickpea (Cicer arietinum L.) to application of phosphorus and bio-fertilizer in laterite soil. Archives of Agronomy and Soil Science, 55(2), 147-155.
El-Feky, S.S., El-Shintinawy, F., Shaker, E.M., & El-Din, H.A.S. (2012). Effect of elevated boron concentrations on the growth and yield of barley (Hordeum vulgare L.) and alleviation of its toxicity using different plant growth modulators. Australian Journal of Crop Science, 6, 1687–1695.
El-Habbasha, S.F., Ahmed, Amal G., & Magda M. H. (2012) Response of some chickpea varieties to compound foliar fertilizer under sandy soil conditions. Journal of Applied Sciences Research, 8 (10), 5177-5183.
Flores, R.A., da Silva, R.G., da Cunha, P.P., Damin, V., de Abdala, K.O., Arrud,a E.M., Rodrigues, R.A., & Maranhão, D.D.C. (2017). Economic viability of Phaseolus vulgaris (BRS Estilo) production in irrigated system in a function of application of leaf boron. Acta Agriculturae Scandinavica. Section B, Soil and Plant Science, 67, 697–704. https://doi.org/10.1080/09064710.2017.1329454
George, T.S., Hinsinger, P., & Turner, B.L. (2016). Phosphorus in soils and plants – facing phosphorus scarcity. Plant and Soil, 401, 1–6. https://doi.org/10.1007/s11104-016-2846-9
Goldbach, H.E., & Wimmer, M.A. (2007). Boron in plants and animals: Is there a role beyond cell wall structure? Journal of Plant Nutrition and Soil Science, 170, 39–48. https://doi.org/10.1002/jpln.200625161
Goud, V.V., Konde, N.M., Mohod, P.V. & Kharche, V.K. (2014) Response of chickpea to potassium fertilization on yield, quality, soil fertility and economic in vertisols. Legume Research, 37 (3), 311-315.
Hawkesford, M.J., Cakmak, I., Coskun, D., De Kok, L.J., Lambers, H., Schjoerring, J.K., & White, P.J. (2023). Functions of macronutrients. Marschner’s Mineral Nutrition of Plants; Academic Press: Cambridge, MA, USA, 201–281. https://doi.org/10.1016/B978-0-12-819773-8.00019-8
Hrytsaienko, Z. M., Hrytsaienko, A. O., & Karpenko, V. P. (2003) Metody biolohichnykh ta ahrokhimichnykh doslidzhen roslyn i gruntiv [Methods of biological and agrochemical studies of plants and soils] K.: ZAT “NIChLAVA”. 320 (In Ukrainian).
Ibeanu, V. N., Edeh, C. G., & Ani, P. N. (2020). Evidence-based strategy for prevention of hidden hunger among adolescents in a suburb of Nigeria. BMC Public Health, 20(1), 1683. https://doi.org/10.1186/s12889-020-09729-8
Isidra-Arellano, M.C., Delaux, P.M., & Valds-Lpez, O. (2021). The phosphate starvation response system: its role in the regulation of plant-microbe interactions. Plant and Cell Physiology, 62, 392–400. https://doi.org/10.1093/pcp/pcab016
Jat, R.S., & Ahalawat I.P.S. (2004). Effect of vermicompost, biofertilizer and nutrient uptake by gram (Cicer arietinum) and their residual effect on fodder maize (Zea mays). Indian journal of agricultural science, 74, 359-361.
Jha, U.C., Nayyar, H., Thudi, M., Beena, R., Prasad, P.V.V. & Siddique, K.H.M. (2024) Unlocking the nutritional potential of chickpea: strategies for biofortification and enhanced multi-nutrient quality. Frontiers in Plant Science, 15, 1391496. https://doi.org/10.3389/fpls.2024.1391496
Karalija, E., Vergata, C., Basso, M.F., Negussu, M., Zaccai, M., Grossi-de-Sa, M.F.; & Martinelli, F. (2022). Chickpeas’ tolerance of drought and heat: Current knowledge and next steps. Agronomy, 12, 2248. https://doi.org/10.3390/agronomy12102248
Kaur, N., Sharma, P. & Sharma, S. (2015). Co-inoculation of Mesorhizobium sp. and plant growth promoting rhizobacteria Pseudomonas sp. as bio-enhancer and bio-fertilizer in chickpea (Cicer arietinum L.). Legume Researsh, 38, 367-374. https://doi.org/10.5958/0976-0571.2015.00099.5
Kaushik, P., Pati, P.H., Khan, M.L., & Khare, P.K. (2021). A quick and simple method for estimating leaf area by leaf weight. International Journal of Botany Studies, 6, 1286–1288.
Koul, B., Sharma, K., Sehgal, V., Yadav, D., Mishra, M.; & Bharadwaj, C. (2022). Chickpea (Cicer arietinum L.) biology and biotechnology: from domestication to biofortification and biopharming. Plants, 11, 2926. https://doi.org/10.3390/plants11212926
Kumar, D., Arvadiya, L.K., Kumawat, A.K., Desai, K.L. & Patel, T. U. (2014). Yield, protein content, nutrient content and uptake of chickpea (Cicer arietinum L.) as influenced by graded levels of fertilizers and bio-fertilizers. Research Journal of Chemical and Environmental Sciences, 2, 60-64.
Lambers, H. (2022). Phosphorus acquisition and utilization in plants. Annu. Review of Plant Biology, 73, 17–42. https://doi.org/10.1146/annurev-arplant-102720-125738
Lepetit, M. & Brouquisse, R. (2023). Control of the rhizobium–legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires interorgan systemic signaling. Frontiers in Plant Science, 14, 1114840. https://doi.org/10.3389/fpls.2023.1114840
McKenzie, B. A., & G. D. Hill. 1995. Growth and yield of two chickpea (Cicer arietinum L.) varieties in Canterbury, New Zealand. New Zealand Journal of Crop and Horticultural Science, 23, 467-474.
Meena, R., Meena M., Sharma, P.K., & Chetan Kumar, C. (2020). Effect of fertility levels and bio-fertilizers on growth and yield of chickpea (Cicer arietinum L.). International Journal of Current Microbiology and Applied Sciences, 9(2), 3098-3103. https://doi.org/10.20546/ijcmas.2020.902.357
Michail ,T., Walter, T., Astrid, W., Walter, G., Dieter, G., & Maria, S.J. (2004). A survey of foliar mineral nutrient concentrations of Pinus canariensis at field plots in Tenerife. Forest Ecology and management, 189, 49-55.
Mir, A.H., Bhat, M.A., Dar, S.A., Sofi, P.A., Bhat, N.A., & Mir, R.R. (2021). Assessment of cold tolerance in chickpea (Cicer spp.) grown under cold/freezing weather conditions of North-Western Himalayas of Jammu and Kashmir, India. Physiology and Molecular Biology of Plants, 27(5), 1105–1118. https://doi.org/10.1007/s12298-021-00997-1
Monteoliva, M., Valetti, L., Taurian, T., Crociara, C. S., & Guzzo, M. C. (2022). Synthetic communities of bacterial endophytes to improve the quality and yield of legume crops. Intech Open. 1–36. https://doi.org/10.5772/intechopen.102519
Muhie, S.H. (2022). Optimization of photosynthesis for sustainable crop production. CABI Agriculture and Bioscience, 3, 50. https://doi.org/10.1186/s43170-022-00117-3
Nakei, M.D., Venkataramana, P.B., & Ndakidemi, P.A. (2022). Soybean-nodulating rhizobia: ecology, characterization, diversity, and growth promoting functions. Frontiers in Sustainaible Food System, 6, 824444. https://doi.org/10.3389/fsufs.2022.824444
Nychyporovych, A. A. (1963). O putiakh povyshenyia produktyvnosty fotosynteza rastenyi v posevakh. V kn.: Fotosyntez y voprosy produktyvnosty rastenyi. M.: Yzd-vo AN SSSR. 5–36.
O’Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology, 100, 5729–5746. https://doi.org/10.1007/s00253-016-7590-9
Oosterhuis, D.M., Loka, A.D., Kawakami, E.M., & William, T. (2014). Pettigrew chapter three – the physiology of potassium in crop production. Advances in agronomy, 126, 203-233. https://doi.org/10.1016/B978-0-12-800132-5.00003-1
Pasiakos, S. M., Agarwal, S., Lieberman, H. R., & Fulgoni, V. L. (2015). Sources and amounts of animal, dairy, and plant protein intake of US adults in 2007–2010. Nutrients, 7(8), 7058–7069. https://doi.org/10.3390/nu7085322
Pastor-Bueis, R., Sánchez-Cañizares, C., James, E.K. & González-Andrés, F. (2019). Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of Rhizobium leguminosarum bv. phaseoli, and genomic-based insights into its agronomic performance. Frontiers in Microbiology, 10, 2724. https://doi.org/10.3389/fmicb.2019.02724
Prajapati, K., & Modi, H.A. (2012). The importance of potassium in plant growth – a review. Indian Journal of Plant Sciences, 1(02-03), 177-186.
Rashid, A., Ishaque, M., Hameed, K., Shabbirand, M. & Ahmad. (2013). Growth and yield response of three chickpea cultivars to varying NPK levels. Asian Journal of Agriculture and Biology, 1, 95-99.
Reinprecht, Y., L. Schram, F. Marsolais, T.H. Smith, B. Hill, & K.P. Pauls. (2020). Effects of nitrogen application on nitrogen fixation in common bean production. Frontiers in Plant Science, 11, 1172. https://doi.org/10.3389/fpls.2020.01172
Sánchez-Navarro, V., Zornoza, R., Faz, Á., Egea-Gilabert, C., Ros, M., Pascual, J. A., & Fernández, J. A. (2020). Inoculation with different nitrogen-fixing bacteria and arbuscular mycorrhiza affects grain protein content and nodule bacterial communities of a Fava Bean Crop. Agronomy, 10 (6), 768. https://doi.org/10.3390/agronomy10060768
Shah, T., Fareed, A. & Nauman, M. (2016). Yield and quality response of chickpea cultivars to different NPK levels. Austin Food Sciences, 1(4), 1-4.
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., & Zhang, F. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 997-1005. https://doi.org/10.1104/pp.111.175232
Simkin, A. J., Patricia, E. López-Calcagno, & Christine, A. (2019). Raines Feeding the world: improving photosynthetic efficiency for sustainable crop production. Journal of Experimental Botany, 70 (4), 1119–1140. https://doi.org/10.1093/jxb/ery445
Singh, P., & Krishnaswamy, K. (2022). Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends in Food Science & Technology, 128, 331–344. https://doi.org/10.1016/j.tifs.2022.08.015
Sridevi, M., & Mallaiah, K.V. (2009). Phosphate solubilization by Rhizobium strains. Indian Journal of Microbiology, 49, 98. https://doi.org/10.1007/s12088-009-0005-1
Wang, J., Li, Y., Li, A., Liu, R.H., Gao, X., Li, D., Kou, X., & Xue, Z. (2021). Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Research International, 150, 110790. https://doi.org/10.1016/j.foodres.2021.110790
Wang, N., Yang, C., Pan, Z., Liu, Y. & Peng, S. (2015). Boron deficiency in woody plants: Various responses and tolerance mechanism. Frontiers in Plant Science, 6, 916. https://doi.org/10.3389/fpls.2015.00916
Werner, D., & Newton, W. E. (2005). Nitrogen fixation in agriculture, forestry, ecology and environment. Netherlands, 2005. 347.
Yeremko, L., Hanhur, V., & Staniak, M. (2024) Effect of mineral fertilization and seed inoculation with microbial preparation on seed and protein yield of pea (Pisum sativum L.). Agronomy, 14, 1004. https://doi.org/10.3390/agronomy14051004
Yeremko, l., Hanhur, V., & Staniak, M. (2024). Effect of fertilization and microbial preparations on productivity of chickpea (Cicer arietinum L.). Acta Agrobotanica, 77, https://doi.org/10.5586/aa/182829
Yeshchenko, V. O., Kopytko, P. H., Opryshko, V. P., & Kostohryz, P. V. (2005). Osnovy naukovykh doslidzhen v ahronomii [fundamentals of scientific research in agronomy]. Diia. 288 (In Ukrainian).