In vitro screening for antimicrobial potential of ethanolic leaf extracts of some begonia species against methicillin-resistant staphylococcus aureus (MRSA) strain

DOI: 10.32900/2312-8402-2020-123-30-38

Tkachenko H.,
Doctor of Biological Sciences,
Kurhaluk N.,
Doctor of Biological Sciences,
Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland,
Buyun L.,
Doctor of Biological Sciences,
M. Gryshko National Botanic Garden, National Academy of Science of Ukraine,
Tomin V.,
Doctor of Physical Sciences,
Pomeranian University in Słupsk, Poland

Keywords: Begonia, ethanolic extracts, antimicrobial activities, Kirby-Bauer disc diffusion susceptibility test protocol


The antimicrobial activities of ethanolic extracts obtained from the leaves of Begonia solimutata L.B. Sm. & Wassh., Begonia goegoensis N.E.Br., Begonia foliosa Kunth, Begonia × erythrophylla Hérincq, Begonia thiemei C.DC., Begonia peltata Otto & Dietr., Begonia heracleifolia Cham. & Schltdl., Begonia dregei Otto & Dietr., and Begonia mexicana G. Karst. ex Fotsch were assessed against methicillin-resistant Staphylococcus aureus (MRSA) strain. The leaves were brought into the laboratory for antimicrobial studies. Freshly crushed leaves were washed, weighed, and homogenized in 96% ethanol (in proportion 1:19) at room temperature. The extracts were then filtered and investigated for their antimicrobial activity. The testing of the antibacterial activity of the plant extracts was carried out in vitro by the Kirby-Bauer disc diffusion susceptibility test protocol. The most effective plants among species screened against S. aureus NCTC 12493 growth were B. peltata, B. thiemei, B. foliosa, Begonia × erythrophylla, and B. solimutata being highly active with the ethanolic extracts (diameters of inhibition zone ranged from 12.5 to 21 mm). The ethanolic extracts from nine Begonia plant species were evaluated for their antimicrobial activity against methicillin-resistant S. aureus (MRSA) strain. Extracts from all test Begonia plants caused a remarkable reduction in bacterial growth, measured as an inhibition zone diameters. The diameter of the inhibition zone for B. solimutata was (16.4±1.1) mm, for B. goegoensis – (14.2±1.0) mm, for B. foliosa – (14.9±1.2) mm, for Begonia × erythrophylla – (16.9±0.9) mm, for B. thiemei – (16.8±1.3) mm, for B. peltata – (18.1±0.9) mm, for B. heracleifolia – (15.3±0.9) mm, for B. dregei – (14.7±1.1) mm, and for B. mexicana – (13.8±0.9) mm/ The highly active antimicrobial effects of extracts obtained from B. peltata and B. thiemei noted against S. aureus NCTC 12493 growth is worthy of highlighting. Our studies indicated that Begonia plants are worthy of further investigation as a potential phytotherapeutic agent for treating infections caused by S. aureus., as well as for the development of innovative feed and preventative products in animal husbandry.


  1. Amutha S., & Sreedevikumari, (2016). Evaluation of antibacterial activity of different solvent extracts of Begonia cordifolia. Int. J. Zool. Appl. Biosci., 1(3), 144–147.
  2. Ariharan, V. , Meena Devi, V. N., Rajakokhila, M., & Nagendra Prasad, P. (2012). A new natural source for vitamin C. International Journal of Plant, Animal and Environmental Sciences, 2(3), 92–94.
  3. Batista, L. , Cid, Y. P., De Almeida, A. P., Prudêncio, E. R., Riger, C. J., De Souza, M. A., Coumendouros, K., & Chaves, D. S. (2016). In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis. Parasitology, 143(5), 627–638.
  4. Bauer, A. , Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4), 493–496.
  5. Buyun, L., Tkachenko, H., Kurhaluk, N., Góralczyk, A., Tomin, V., & Osadowski, Z. (2019). Screening for antimicrobial activity of nine ethanolic extracts obtained from leaves of Begonia plant: a possible alternative in the treatment of infections caused by Citrobacter freundii. Agrobiodiversity for Improving Nutrition, Health, and Life Quality, (3), 312–322.
  6. Diaz Carrasco, J. , Redondo, L. M., Redondo, E. A., Dominguez, J. E., Chacana, A. P., & Fernandez Miyakawa, M. E. (2016). Use of Plant Extracts as an Effective Manner to Control Clostridium perfringens Induced Necrotic Enteritis in Poultry. Biomed. Res. Int., 2016, 3278359.
  7. Garnacho-Montero, J., Amaya-Villar, R., Gutiérrez-Pizarraya, A., Espejo-Gutiérrez de Tena, E., Artero-González, M. , Corcia-Palomo, Y., & Bautista-Paloma,J. (2013). Clinical efficacy and safety of the combination of colistin plus vancomycin for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii. Chemotherapy, 59(3), 225–231.
  8. Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Cell Infect. Microbiol., 10, 107.
  9. Harkins, C. , Pichon, B., Doumith, M., Parkhill, J., Westh, H., Tomasz,A., de Lencastre, H., Bentley, S.D., Kearns, A.M., & Holden, M.T.G. (2017). Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol., 18(1), 130.
  10. Holetz, F. , Pessini, G. L., Sanches, N. R., Cortez, D. A., Nakamura,C. V., & Filho, B. P. (2002). Screening of some plants used in Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz, 97, 1027–1031.
  11. Indrkumar, , Gomathi, R., & Karpagam, S. (2014). Antimicrobial and In vitro Antioxidant Potential of Begonia dipetala Graham. Int. J. Pharm. Sci. Rev. Res., 27(2), 382–386.
  12. Karpova, E., Nabieva, A., Fershalova, T., Yakimova, Y., & Tsybulya, N. (2019). Flavonoids and Antimicrobial Properties of Begonia fischeri palustris in vitro Plantlets. OnLine Journal of Biological Sciences, 19(1), 20–27.
  13. Karpova, E. , Kchramova, E. P., & Fershalova, T. D. (2009). Flavonoids and ascorbic acid in the representatives of the genus Begonia L. Chemistry of Plant Raw Material, 2, 105–110.
  14. Khosravi, A. , Shokri, H., & Fahimirad, S. (2016). Efficacy of medicinal essential oils against pathogenic Malassezia sp. isolates. J. Mycol. Med., 26(1), 28–34.
  15. Kuok, C. , Hoi, S. O., Hoi, C. F., Chan, C. H., Fong, I. H., Ngok, C. K., Meng, L. R., & Fong, P. (2017). Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp. Biol. Med. (Maywood), 242(7), 731–743.
  16. Lakhundi, S., & Zhang, K. (2018). Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Microbiol. Rev., 31(4), e00020-18.
  17. Lee, A. , de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers, 4, 18033.
  18. Mushtaq, S., Shah, A. , Shah, A., Lone, S. A., Hussain, A., Hassan, Q. P., & Ali, M. N. (2018). Bovine mastitis: An appraisal of its alternative herbal cure. Microb. Pathog., 114, 357–361.
  19. Okoth, D. , Chenia, H. Y., & Koorbanally, N. A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Phytochem. Lett., 6, 476–481.
  20. Ramesh, N., Viswanathan, M. , Saraswathy, A., Balakrishna, K., Brindha,P., & Lakshmanaperumalsamy, P. (2002). Phytochemical and antimicrobial studies of Begonia malabarica. J. Ethnopharmacol., 79(1), 129–132.
  21. Simões, M., Bennett, R. , & Rosa, E. A. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep., 26(6), 746–757.
  22. Siregar, H. , Purwantoro, R. S., & Praptiwi Agusta, A. (2018). Antibacterial potency of simple fractions of ethyl acetate extract of Begonia baliensis. Nusantara Bioscience, 10, 159–163.
  23. Tkachenko, H., Buyun, L., & Osadowski, Z. (2017). The antimicrobial properties of extracts obtained from Begonia goegoensis E.Br. leaf against Pseudomonas aeruginosa isolates. Agrobiodiversity for Improving Nutrition, Health, and Life Quality, 1, 454–460.
  24. Tkachenko, H., Buyun, L., Osadowski, Z., & Belayeva, Y. (2016). In vitro microbiological investigation of ethanolic extracts obtained from leaves of various Begonia species against Escherichia coli. Słupskie Prace Biologiczne, 13, 277–294.
  25. Tsybulya, N. , Fershalova, T. D., & Yakimova, Yu. L. (2010). Examination of the antimicrobial activity of some Begonia L. species as a possible piece of phytodesign. Aerospace and Environmental Medicine, 44(1), 47–50.
  26. Tyers M., & Wright G. (2019). Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat. Rev Microbiol., 17(3), 141–155.
  27. Zar J. (1999). Biostatistical Analysis. 4th ed., Prentice-Hall Inc., Englewood Cliffs, New Jersey.