Identification of the antibacterial efficacy of ethanolic extracts from aglaonema commutatum schott leaves and its cultivars against escherichia coli strain

DOI: 10.32900/2312-8402-2020-123-21-30

Opryshko M.,
a post-graduate student,
Gyrenko O.,
a post-graduate student,
Buyun L.,
Doctor of Biological Sciences,
M. Gryshko National Botanic Garden, National Academy of Science of Ukraine,
Tkachenko H.,
Doctor of Biological Sciences,
Kurhaluk N.,
Doctor of Biological Sciences,
Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland,
Tomin V.,
Doctor of Physical Sciences,
Department of Physics, Pomeranian University in Słupsk, Poland

Keywords: Aglaonema commutatum, antibacterial activity, Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922™) strain, Kirby-Bauer disc diffusion technique


Abstract

This study aimed to evaluate the antibacterial activity of ethanolic extracts obtained from the leaves of Aglaonema commutatum Schott and its cultivars («Malay Beauty», «Silver Queen», and «Silver King») against Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922) strain. The leaves of Aglaonema commutatum plants and its cultivars, cultivated under glasshouse conditions, were sampled at M. M. Gryshko National Botanic Garden (NBG), National Academy of Science of Ukraine (Kyiv, Ukraine). The leaves were brought into the laboratory for antimicrobial studies. Freshly sampled leaves were washed, weighed, and homogenized in 96% ethanol (in proportion 1:19) at room temperature. The extracts were then filtered and investigated for their antimicrobial activity. Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922) strain was used in our study.
Antimicrobial activities of various ethanolic extracts obtained from leaves of Aglaonema commutatum plants and its cultivars («Malay Beauty», «Silver Queen», and «Silver King») against Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922) strain was screened in the current study. The testing of the antibacterial activity of the plant extracts was carried out in vitro by the Kirby-Bauer disc diffusion technique. The leaf extracts from A. commutatum «Silver Queen» and A. commutatum ‘Silver King’ exhibited higher inhibitory activity than the extracts from A. commutatum and A. commutatum «Malay Beauty». Maximum in vitro inhibition was scored by A. commutatum «Silver Queen», followed by A. commutatum «Silver King», A. commutatum, and A. commutatum «Malay Beauty».
In particular, the leaf extracts from A. commutatum «Silver Queen» and A. commutatum ‘Silver King’ exhibited higher inhibitory activity than the extracts from A. commutatum and A. commutatum «Malay Beauty». Maximum in vitro inhibition was scored by A. commutatum «Silver Queen», followed by A. commutatum «Silver King», A. commutatum, and A. commutatum «Malay Beauty», which presented inhibition zones of (18.6±1.2) mm, (16.1±0.9) mm, (15.7±1.1) mm, and (13.5±1.0) mm, respectively. In the case of the positive controls, 96% ethanol possesses a mild anti-E. coli effect, which presented inhibition zones of (9.5±1.2) mm. The inhibition zone diameters were increased by 96% (p<0.05) for A. commutatum «Silver Queen», by 69 % (p<0.05) for A. commutatum «Silver King», by 65 % (p<0.05) for A. commutatum, and by 42 % (p<0.05) for A. commutatum «Malay Beauty».
Thus, the use of these plants in traditional medicine and veterinary medicine was experimentally confirmed as a potential source of raw materials for the development of medicines in the future, as well as for the development of innovative feed for farm animals.

References

  1. Bauer, A. W., Kirby, W. M., Sherris, J. C., Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. J. Clin. Pathol., 45(4), 493–496.
  2. Chee, C. F., Leea, H. B., Ong, H. C., Ho, A. S. H. (2005). Photocytotoxic Pheophorbide-Related compounds from Aglaonema simplex. Biodivers., 2(12), 1648–1655.
  3. Chen, J., Henny, R. J., Liao, F. (2007). Aroids are important medicinal plants. Acta Hortic., 756, 347–354.
  4. Chen, J., Henny, R. J., McConnell, D. B. (2002). Development of new foliage plant cultivars. p. 466-472. In: J. Janick and A. Whipkey (eds.), Trends in new crops and new uses, Timber Press, Inc., Portland, Ore.
  5. Chen, J., McConnell, D. B., Henny, R. J., Everitt, K. C. (2003). Cultural guidelines for commercial production of interiorscape Aglaonema. TFAS Extension EnH95, Univ. Florida, (р 1–5).
  6. Govaerts, R., Frodin, D. G. (2002). World checklist and bibliography of Araceae (and Acoraceae), Royal Bot. Gard., Kew, UK, p. 1–560.
  7. Iqbal, M., Bakht, J., Shafi, M. (2018). Phytochemical screening and antibacterial activity of different solvent extracted samples of Arisaema jacquemontii. J. Pharm. Sci., 31(1), 75–81.
  8. Islam, A., Kamal, T., Hosen, M., Sharmin, N., Hossain, S., Islam, N. (2019). Lethal efficacy of indoor ornamental plant Aglaonema marantifolium (Schott.) against three economically important stored product pests Callosobruchus chinensis (L.), Sitophilus oryzae (L.) and Tribolium castaneum (HBST.). Journal of Pharmacognosy and Phytochemistry, 8(1), 2198–2201.
  9. Islam, A., Mahmud, I., Saha, S., Sarker, A. B., Mondal, H., Monjur-Al-Hossain, A. S., Anisuzzman, M. (2013). Preliminary pharmacological evaluation of Alocasia indica Schott tuber. Integr. Med., 11(5), 343–351.
  10. Ismail, Z., Ahmad, A. (2017). Phytochemical screening of in vitro Aglaonema simplex plantlet extracts as inducers of SR-B1 ligand expression. Journal of Sustainability Science and Management, 12(2), 34–44.
  11. Jang, J., Hur, H. G., Sadowsky, M. J., Byappanahalli, M. N., Yan, T., Ishii, S. (2017). Environmental Escherichia coli : ecology and public health implications – a review. Appl. Microbiol., 123(3), 570–581.
  12. Kiatsongchai, R. (2015). Biological properties and toxicity of wan khan mak (Aglaonema simplex) Fruit extract. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Biology Suranaree University of Technology, (рp. 176).
  13. Mayo, D. J., Bogner, J., Boyce, P. C. (1997). The genera of Araceae. Royal Botanic Gardens, Kew.
  14. Mulla, W. A., Chopade, A. R., Bhise, S. B., Burade, K. B., Khanwelkar, C. C. (2011). Evaluation of antidiarrheal and in vitro antiprotozoal activities of extracts of leaves of Alocasia indica. Biol., 49(4), 354–361
  15. Nojima, H., Kimura, I., Chen, F. J., Sugihara, Y., Haruno, M., Kato, A., Asano, N. (1998). Antihyperglycemic effects of N-containing sugars from Xanthocercis zambesiaca, Morus bombycis, Aglaonema treubii, and Castanospermum australe in streptozotocin-diabetic mice. Nat. Prod., 61(3), 397–400.
  16. Okoth, D. A., Chenia, H. Y., Koorbanally, N. A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Lett., 6, 476–481.
  17. Opryshko, M., Gyrenko, O., Tkachenko, H., Buyun, L., Osadowski, Z. (2019). Dose-depended protective effect of the Aglaonema simplex (Blume) Blume leaf extract on the resistance of human Abstract Proceedings of ІІ International scientific conference „The present of biological science”, Sumy State Pedagogical University named after A.S. Makarenko, Sumy, (рp. 130–137).
  18. Opryshko, M., Tkachenko, H., Buyun, L., Kurhaluk, N., Góralczyk, A., Tomin, W., Osadowski, Z. (2019). Evaluation of the antibacterial activity of ethanolic extracts obtained from Aglaonema commutatum Schott and its cultivars against Citrobacter freundii. Agrobiodiversity for Improving Nutrition, Health, and Life Quality, (3), 154–164.
  19. Perry, L. M. (1980). Medicinal Plants of East and Southeast Asia. Attributed properties and uses. M.I.T. Press, Cambridge, MA.
  20. Poirel, L., Madec, J. Y., Lupo, A., Schink, A. K., Kieffer, N., Nordmann, P., Schwarz, S. (2018). Antimicrobial Resistance in Escherichia coli. Spectr., 6(4).
  21. Rajput, M. T., Choufhary, M. I., Naimul-Hasan Naqvi, S., Abbas, A. (2010). Importance and implementation of essential oil of Pakistanian Acorus calamus as a biopesticide. Pak. J. Bot., 42(3), 2043–2050.
  22. Roy, A., Biswas, S. K., Chowdhury, A., Shill, M. C., Raihan, S. Z., Muhit, A. (2011). Phytochemical screening, cytotoxicity and antibacterial activities of two Bangladeshi medicinal plants. Pak. J. Biol. Sci., 14(19), 905–908.
  23. Roy, S., Dutta, CH., Paul, S. B. (2013). Antibacterial activity of Araceae: An overview. International Journal of Research in Ayurveda and Pharmacy, 4(1), 15–17.
  24. Tabassum, S., Ahmed, M., Mirza, B., Naeem, M., Zia, M., Shanwari, Z. K., Khan, G. M. (2017). Appraisal of phytochemical and in vitro biological attributes of an unexplored folklore: Rhus Punjabensis Stewart. BMC Complement. Altern. Med., 17(1), 146.
  25. Tabassum, S., Zia, M., Carcahe de Blanco, E. J., Batool, R., Aslam, R., Hussain, S., Wali, Q., Gulzar, M. M. (2019). Phytochemical, in-vitro biological and chemo-preventive profiling of Arisaema jacquemontii Blume tuber extracts. BMC Complement. Altern. Med., 19(1), 256.
  26. Yadav, R., Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Phytol., 3(12), 10–14.
  27. Zar, J. H. (1999). Biostatistical Analysis. 4th, Prentice-Hall Inc., Englewood Cliffs, New Jersey.