DOI: 10.32900/2312-8402-2023-129-16-25
Keywords: β-glucans, oxidative stress, lipid peroxidation, Thymallus thymallus, Oncorhynchus mykiss, Coregonus lavaretus
Abstract
Dietary β-glucans may be a useful tool to prime the host immune system and increase resistance against invading pathogens as the β-glucans influence the immune response. This prompted us to investigate the effects of dietary yeast β-1,3/1,6-D-glucans supplemented for a 14-day feeding period on liver and cardiac function and the oxidative mechanisms underlying these effects. We assessed relevant lipid peroxidation in the hepatic and cardiac tissue of rainbow trout (Oncorhynchus mykiss), European whitefish (Coregonus lavaretus), and graylings (Thymallus thymallus) after a 14-day period of supplementation with β-glucans. Thirty healthy grayling weighing 34.9 ± 1.9 g, thirty healthy rainbow trout weighing 55.9 ± 2.1 g, and thirty healthy European whitefish weighing 43.3 ± 2.7 g were used in the experiments. The fish were fed with a commercial basal diet at a rate of 1.5% body weight four times a day. After acclimation, the fish were randomly divided into six groups. The groups were fed for 14 days as follows: the control groups comprising grayling (n = 15), rainbow trout (n = 15), and European whitefish (n = 15) received a control basal diet and the β-glucan groups were fed with the Yestimun® food product at a dose of 1% of the basal feed (with 85% of β-1.3/1.6-glucans, Leiber GmbH, Bramsche, Germany). The basal feed was supplemented with 1% of Yestimun® powder (dose: 1 kg per 99 kg, w/w). This insoluble and highly purified preparation contains natural polysaccharides, e.g. β-1,3/1,6-D-glucans derived from Spent Brewers’ Yeast (Saccharomyces cerevisiae). Yeast cell walls typically contain approximately 30% of β-glucans of dry weight. Our results showed that feeding with low doses of β-glucans induced a decrease in TBARS levels in the hepatic and cardiac tissues of rainbow trout, andEuropean whitefish. Similarly, 14 days of feeding graylings with low doses of β-glucans resulted in a decrease in the TBARS levels both in the hepatic and cardiac tissues. This study confirms that dietary β-glucan is beneficial for promoting growth and enhancing antioxidant capacity against oxidative stress in rainbow trout, European whitefish, and graylings. Indeed, we cautiously hypothesized that feeding low β-glucans doses may help to boost antioxidant function, especially by the decrease of biomarkers of lipid peroxidation in the hepatic and cardiac tissues of these fish.
References
- Ai, Q., Mai, K., Zhang, L., Tan, B., Zhang, W., Xu, W., & Li, H. (2007). Effects of dietary beta-1, 3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish & shellfish immunology, 22(4), 394–402. https://doi.org/10.1016/j.fsi.2006.06.011.
- Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity, 2014, 360438. https://doi.org/10.1155/2014/360438.
- Babincová, M., Bacová, Z., Machová, E., & Kogan, G. (2002). Antioxidant properties of carboxymethyl glucan: comparative analysis. Journal of medicinal food, 5(2), 79–83. https://doi.org/10.1089/109662002760178159.
- Babincová, M., Machová, E., & Kogan, G. (1999). Carboxymethylated glucan inhibits lipid peroxidation in liposomes. Zeitschrift fur Naturforschung. C, Journal of biosciences, 54(12), 1084–1088. https://doi.org/10.1515/znc-1999-1213.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999.
- Bridle, A. R., Carter, C. G., Morrison, R. N., & Nowak, B. F. (2005). The effect of beta-glucan administration on macrophage respiratory burst activity and Atlantic salmon, Salmo salar L., challenged with amoebic gill disease – evidence of inherent resistance. Journal of fish diseases, 28(6), 347–356. https://doi.org/10.1111/j.1365-2761.2005.00636.x.
- Cook, M. T., Hayball, P. J., Hutchinson, W., Nowak, B. F., & Hayball, J. D. (2003). Administration of a commercial immunostimulant preparation, EcoActiva as a feed supplement enhances macrophage respiratory burst and the growth rate of snapper (Pagrus auratus, Sparidae (Bloch and Schneider)) in winter. Fish & shellfish immunology, 14(4), 333–345. https://doi.org/10.1006/fsim.2002.0441.
- Dalonso, N., Goldman, G. H., & Gern, R. M. (2015). β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons. Applied microbiology and biotechnology, 99(19), 7893–7906. https://doi.org/10.1007/s00253-015-6849-x.
- Dietrich-Muszalska, A., Olas, B., Kontek, B., & Rabe-Jabłońska, J. (2011). Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced by haloperidol. International journal of biological macromolecules, 49(1), 113–116. https://doi.org/10.1016/j.ijbiomac.2011.03.007.
- Douxfils, J., Fierro-Castro, C., Mandiki, S. N., Emile, W., Tort, L., & Kestemont, P. (2017). Dietary β-glucans differentially modulate immune and stress-related gene expression in lymphoid organs from healthy and Aeromonas hydrophila-infected rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology, 63, 285–296. https://doi.org/10.1016/j.fsi.2017.02.027.
- Engstad, R. E., Robertsen, B., & Frivold, E. (1992). Yeast glucan induces increase in lysozyme and complement-mediated haemolytic activity in Atlantic salmon blood. Fish & shellfish immunology, 2, 287–297. https://doi.org/10.1016/S1050-4648(06)80033-1.
- Giese, E. C., Gascon, J., Anzelmo, G., Barbosa, A. M., da Cunha, M. A., & Dekker, R. F. (2015). Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. International journal of biological macromolecules, 72, 125–130. https://doi.org/10.1016/j.ijbiomac.2014.07.046.
- Heras, R. L., Rodríguez-Gil, J. L., Sauto, J. S. S., Sánchez, P. S., & Catalá, M. (2018). Analysis of lipid peroxidation in animal and plant tissues as field-based biomarker in Mediterranean irrigated agroecosystems (Extremadura, Spain). Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 53(9), 567–579. https://doi.org/10.1080/03601234.2018.1473962.
- Kamyshnikov, V. S. (2004). A reference book on the clinic and biochemical research and laboratory diagnostics. MEDpress-inform, Moscow.
- Liu, Y., Wu, Q., Wu, X., Algharib, S. A., Gong, F., Hu, J., Luo, W., Zhou, M., Pan, Y., Yan, Y., & Wang, Y. (2021). Structure, preparation, modification, and bioactivities of β-glucan and mannan from yeast cell wall: A review. International journal of biological macromolecules, 173, 445–456. https://doi.org/10.1016/j.ijbiomac.2021.01.125.
- Machuca, C., Méndez-Martínez, Y., Reyes-Becerril, M., & Angulo, C. (2022). Yeast β-Glucans as Fish Immunomodulators: A Review. Animals: an open access journal from MDPI, 12(16), 2154. https://doi.org/10.3390/ani12162154.
- Meena, D. K., Das, P., Kumar, S., Mandal, S. C., Prusty, A. K., Singh, S. K., Akhtar, M. S., Behera, B. K., Kumar, K., Pal, A. K., & Mukherjee, S. C. (2013). Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish physiology and biochemistry, 39(3), 431–457. https://doi.org/10.1007/s10695-012-9710-5.
- Misra, C. K., Das, B. K., Mukherjee, S. C., & Pattnaik, P. (2006). Effect of multiple injections of beta-glucan on non-specific immune response and disease resistance in Labeo rohita fingerlings. Fish & shellfish immunology, 20(3), 305–319. https://doi.org/10.1016/j.fsi.2005.05.007.
- Murphy, E. A., Davis, J. M., & Carmichael, M. D. (2010). Immune modulating effects of β-glucan. Current opinion in clinical nutrition and metabolic care, 13(6), 656–661. https://doi.org/10.1097/MCO.0b013e32833f1afb.
- Nakashima, A., Yamada, K., Iwata, O., Sugimoto, R., Atsuji, K., Ogawa, T., Ishibashi-Ohgo, N., & Suzuki, K. (2018). β-Glucan in Foods and Its Physiological Functions. Journal of nutritional science and vitaminology, 64(1), 8–17. https://doi.org/10.3177/jnsv.64.8.
- Petit, J., & Wiegertjes, G. F. (2016). Long-lived effects of administering β-glucans: Indications for trained immunity in fish. Developmental and comparative immunology, 64, 93–102. https://doi.org/10.1016/j.dci.2016.03.003.
- Reis, B., Gonçalves, A. T., Santos, P., Sardinha, M., Conceição, L. E. C., Serradeiro, R., Pérez-Sánchez, J., Calduch-Giner, J., Schmid-Staiger, U., Frick, K., Dias, J., & Costas, B. (2021). Immune Status and Hepatic Antioxidant Capacity of Gilthead Seabream Sparus aurata Juveniles Fed Yeast and Microalga Derived β-glucans. Marine drugs, 19(12), 653. https://doi.org/10.3390/md19120653.
- Salah, A. S., El Nahas, A. F., & Mahmoud, S. (2017). Modulatory effect of different doses of β-1,3/1,6-glucan on the expression of antioxidant, inflammatory, stress and immune-related genes of Oreochromis niloticus challenged with Streptococcus iniae. Fish & shellfish immunology, 70, 204–213. https://doi.org/10.1016/j.fsi.2017.09.008.
- Schronerová, K., Babincová, M., Machová, E., & Kogan, G. (2007). Carboxymethylated (1->3)-beta-D-glucan protects liposomes against ultraviolet light-induced lipid peroxidation. Journal of medicinal food, 10(1), 189–193. https://doi.org/10.1089/jmf.2006.260.
- Soltanian, S., Adloo, M. N., Hafeziyeh, M., & Ghadimi, N. (2014). Effect of β-Glucan on cold-stress resistance of striped catfish, Pangasianodon hypophthalmus (Sauvage, 1878). Veterinární Medicína, 59(9), 440–446. https://doi.org/10.17221/7684-VETMED.
- Song, L., Zhou, Y., Ni, S., Wang, X., Yuan, J., Zhang, Y., & Zhang, S. (2020). Dietary Intake of β-Glucans Can Prolong Lifespan and Exert an Antioxidant Action on Aged Fish Nothobranchius guentheri. Rejuvenation research, 23(4), 293–301. https://doi.org/10.1089/rej.2019.2223.
- Stier, H., Ebbeskotte, V., & Gruenwald, J. (2014). Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition journal, 13, 38. https://doi.org/10.1186/1475-2891-13-38.
- Swennen, K., Courtin, C. M., & Delcour, J. A. (2006). Non-digestible oligosaccharides with prebiotic properties. Critical reviews in food science and nutrition, 46(6), 459–471. https://doi.org/10.1080/10408390500215746.
- Tokunaka, K., Ohno, N., Adachi, Y., Tanaka, S., Tamura, H., & Yadomae, T. (2000). Immunopharmacological and immunotoxicological activities of a water-soluble (1–>3)-beta-D-glucan, CSBG from Candida spp. International journal of immunopharmacology, 22(5), 383–394. https://doi.org/10.1016/s0192-0561(99)00093-4.
- Volman, J. J., Ramakers, J. D., & Plat, J. (2008). Dietary modulation of immune function by beta-glucans. Physiology & behavior, 94(2), 276–284. https://doi.org/10.1016/j.physbeh.2007.11.045.
- Zar, J. H. (1999). Biostatistical Analysis. 4th ed., Prentice Hall Inc., New Jersey.
- Zeng, L., Wang, Y. H., Ai, C. X., & Zhang, J. S. (2018). Differential effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker Larimichthys crocea under acute copper stress. Ecotoxicology and environmental safety, 165, 78–87. https://doi.org/10.1016/j.ecoenv.2018.08.098.