Dose-dependent alterations in the biomarkers of lipid and protein oxidation in the muscle tissue of rainbow trout (oncorhynchus mykiss walbaum) after in vitro treatment by extracts of great celandine (chelidonium majus l.)

DOI: 10.32900/2312-8402-2022-128-21-35

Nataniel Stefanowski,
student, 0000-0002-3285-6036,
Halyna Tkachenko,
Doctor of Biological Sciences,,
Natalia Kurhaluk,
Doctor of Biological Sciences,,
Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland,
Ievgenii Aksonov,
The Institute of Animal Science NAAS, Kharkiv, Ukraine

Keywords: rainbow trout (Oncorhynchus mykiss Walbaum), muscle tissue, oxidative stress, 2-thiobarbituric acid reactive substances (TBARS), aldehydic and ketonic derivatives of oxidatively modified proteins (OMP), total antioxidant capacity (TAC)


Consistent with our previous studies, we continue to evaluate the antioxidant potential of representatives of the Papaveraceae family collected from the northern part of Poland on the model of muscle tissue of rainbow trout. Therefore, in the current study, oxidative stress biomarkers [2-thiobarbituric acid reactive substances (TBARS), aldehydic and ketonic derivatives of oxidatively modified proteins (OMP), and total antioxidant capacity (TAC)] were used to evaluate the antioxidant activity of extracts derived from stalks and roots of great celandine (Chelidonium majus L., CM) at a final dose of 5 mg/mL, 2,5 mg/mL, 1,25 mg/mL and 0,63 mg/mL. Homogenate of muscle tissues derived from rainbow trout was used in this in vitro study. Phosphate buffer was used as a positive control (blank). After incubation of the mixture at 25°C for 120 min with continuous mixing, samples were used for biochemical studies. Our studies have shown that the use of extracts at a final dose of 5 mg/ml and 2.5 mg/ml resulted in a statistically significant increase of lipid peroxidation biomarkers (TBARS levels) in the muscle tissue of rainbow trout. The final dose of extract 1.25 mg/ml caused a statistically significant increase in the levels of aldehydic and ketonic derivatives of OMP, and this is reflected when measuring the levels of TAC. On the other hand, the use of extracts at a final dose of 0.63 mg/ml derived from both roots and stems of CM resulted in statistically significant reduced levels of TBARS, as well as aldehydic and ketonic derivatives of OMP in the muscle tissue of rainbow trout after in vitro incubation. The comparison of these results showed that CM extracts can effectively inhibit the production of oxidatively modified carbonyls by scavenging free radicals. The secondary metabolites of CM, i.e. polyphenols, are most likely responsible for this effect. Screening of species of the family Papaveraceae for other biological activities, including antioxidant activity, is essential and may be effective in the search for preventive measures in the pathogenesis of some diseases, as well as in the prevention and treatment of some disorders in veterinary and medicine.


  1. Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell, 120(4), 483–495.
  2. Banerjee, A., Pathak, S., Biswas, S. J., Roy-Karmakar, S., Boujedaini, N., Belon, P., & Khuda-Bukhsh, A. R. (2010). Chelidonium majus 30C and 200C in induced hepato-toxicity in rats. Homeopathy: The Journal of the Faculty of Homeopathy, 99(3), 167–176.
  3. Berger, R. G., Lunkenbein, S., Ströhle, A., & Hahn, A. (2012). Antioxidants in food: mere myth or magic medicine?. Critical Reviews in Food Science and Nutrition, 52(2), 162–171.
  4. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. The World Allergy Organization Journal, 5(1), 9–19.
  5. Chen, A. F., Chen, D. D., Daiber, A., Faraci, F. M., Li, H., Rembold, C. M., & Laher, I. (2012). Free radical biology of the cardiovascular system. Clinical Science (London, England: 1979), 123(2), 73–91.
  6. Colombo, M. L., & Bosisio, E. (1996). Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacological Research, 33(2), 127–134.
  7. Daenen, K., Andries, A., Mekahli, D., Van Schepdael, A., Jouret, F., & Bammens, B. (2019). Oxidative stress in chronic kidney disease. Pediatric Nephrology (Berlin, Germany), 34(6), 975–991.
  8. Dubinina, E. E., Burmistrov, S. O., Khodov, D. A., & Porotov, I. G. (1995). Okislitel’naia modifikatsiia belkov syvorotki krovi cheloveka, metod ee opredeleniia [Oxidative modification of human serum proteins. A method of determining it]. Voprosy Meditsinskoi Khimii, 41(1), 24–26. [in Russian].
  9. Galaktionova, L. P., Molchanov, A. V., El’chaninova, S. A., & Varshavskiĭ, B. I.a (1998). Sostoianie perekisnogo okisleniia u bol’nykh s iazvennoĭ bolezn’iu zheludka i dvenadtsatiperstnoĭ kishki [Lipid peroxidation in patients with gastric and duodenal peptic ulcers]. Klinicheskaia Laboratornaia Diagnostika, (6), 10–14. [in Russian].
  10. Gilca, M., Gaman, L., Panait, E., Stoian, I., & Atanasiu, V. (2010). Chelidonium majus – an integrative review: traditional knowledge versus modern findings. Complementary Medicine Research 17(5), 241–248.
  11. Huang, G., Mei, X., & Hu, J. (2017). The Antioxidant Activities of Natural Polysaccharides. Current Drug Targets, 18(11), 1296–1300.
  12. Jones, D. P. (2008). Radical-free biology of oxidative stress. American Journal of Physiology. Cell Physiology, 295(4), 849–C868.
  13. Kamyshnikov, V. S. (2004). A reference book on the clinic and biochemical researches and laboratory diagnostics. MEDpress-inform, Moscow.
  14. Koriem, K. M., Arbid, M. S., & Asaad, G. F. (2013). Chelidonium majus leaves methanol extract and its chelidonine alkaloid ingredient reduce cadmium-induced nephrotoxicity in rats. Journal of Natural Medicines, 67(1), 159–167.
  15. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., & Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in enzymology, 186, 464–478.
  16. Li, W., Huang, H., Niu, X., Fan, T., Hu, H., Li, Y., Yao, H., Li, H., & Mu, Q. (2014). Tetrahydrocoptisine protects rats from LPS-induced acute lung injury. Inflammation, 37(6), 2106–2115.
  17. Liochev, S. I. (2013). Reactive oxygen species and the free radical theory of aging. Free Radical Biology & Medicine, 60, 1–4.
  18. Locatelli, F., Canaud, B., Eckardt, K. U., Stenvinkel, P., Wanner, C., & Zoccali, C. (2003). Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrology, Dialysis, Transplantation, 18(7), 1272–1280.
  19. Lu, W., Shi, Y., Wang, R., Su, D., Tang, M., Liu, Y., & Li, Z. (2021). Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. International Journal of Molecular Sciences, 22(9), 4945.
  20. Lushchak, V. I. (2016). Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish Physiology and Biochemistry, 42(2), 711–747.
  21. Mazzanti, G., Di Sotto, A., Franchitto, A., Mammola, C. L., Mariani, P., Mastrangelo, S., Menniti-Ippolito, F., & Vitalone, A. (2009). Chelidonium majus is not hepatotoxic in Wistar rats, in a 4 weeks feeding experiment. Journal of Ethnopharmacology, 126(3), 518–524.
  22. Mikołajczak, P. Ł., Kędzia, B., Ożarowski, M., Kujawski, R., Bogacz, A., Bartkowiak-Wieczorek, J., Białas, W., Gryszczyńska, A., Buchwald, W., Szulc, M., Wasiak, N., Górska-Paukszta, M., Baraniak, J., Czerny, B., & Seremak-Mrozikiewicz, A. (2015). Evaluation of anti-inflammatory and analgesic activities of extracts from herb of Chelidonium majus L. Central-European Journal of Immunology, 40(4), 400–410.
  23. Moon, J. K., & Shibamoto, T. (2009). Antioxidant assays for plant and food components. Journal of Agricultural and Food Chemistry, 57(5), 1655–1666.
  24. Neha, K., Haider, M. R., Pathak, A., & Yar, M. S. (2019). Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry, 178, 687–704.
  25. Nile, S. H., Wang, H., Nile, A., Lin, X., Dong, H., Venkidasamy, B., Sieniawska, E., Enkhtaivan, G., & Kai, G. (2021). Comparative analysis of metabolic variations, antioxidant potential and cytotoxic effects in different parts of Chelidonium majus L. Food and Chemical Toxicology, 156, 112483.
  26. Park, J. E., Cuong, T. D., Hung, T. M., Lee, I., Na, M., Kim, J. C., Ryoo, S., Lee, J. H., Choi, J. S., Woo, M. H., & Min, B. S. (2011). Alkaloids from Chelidonium majus and their inhibitory effects on LPS-induced NO production in RAW264.7 cells. Bioorganic & Medicinal Chemistry Letters, 21(23), 6960–6963.
  27. Parveen, A., Akash, M. S., Rehman, K., & Kyunn, W. W. (2016). Recent Investigations for Discovery of Natural Antioxidants: A Comprehensive Review. Critical Reviews in Eukaryotic Gene Expression, 26(2), 143–160.
  28. Petruk, G., Del Giudice, R., Rigano, M. M., & Monti, D. M. (2018). Antioxidants from Plants Protect against Skin Photoaging. Oxidative Medicine and Cellular Longevity, 2018, 1454936.
  29. Pisoschi, A. M., Pop, A., Cimpeanu, C., & Predoi, G. (2016). Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review. Oxidative Medicine and Cellular Longevity, 2016, 9130976.
  30. Pryor, W. A., Houk, K. N., Foote, C. S., Fukuto, J. M., Ignarro, L. J., Squadrito, G. L., & Davies, K. J. (2006). Free radical biology and medicine: it’s a gas, man!. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291(3), R491–R511.
  31. Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24(10), R453–R462.
  32. Stefanowski, N., Tkachenko, H., & Kurhaluk, N. (2021). Effects of extracts derived from roots and stems of Chelidonium majus L. on oxidative stress biomarkers in the model of equine plasma. Agrobiodiversity for Improving Nutrition, Health, and Life Quality, 5(2), 197–208.
  33. Stefanowski, N., Tkachenko, H., & Kurhaluk, N. (2021). Biomarkers of oxidative stress in the blood of rainbow trout after in vitro treatment by extracts derived from Chelidonium majus L. In Youth and Progress of Biology: Abstracts of XVIІ International Scientific Conference for Students and Ph.D. Students (Lviv, April 19–21, 2021). – Lviv: LLC Romus-Poligraf, 2021. – P. 69-70.
  34. Stefanowski, N., Tkachenko, H., & Kurhaluk, N. (2021). Oxidatively modified proteins in the erythrocyte suspension of rainbow trout (Oncorhynchus mykiss Walbaum) after treatment with extracts derived from roots and stalks of Chelidonium majus L. In: Medicinal Herbs: from Past Experience to New Technologies: Proceedings of Ninth International Scientific and Practical Conference; June, 29-30, 2021, Poltava State Agricultural Academy, Poltava, Ukraine. – P. 161-166. 10.5281/zenodo.5541344.
  35. Stefanowski, N., Tkachenko, H., Kurhaluk, N., & Aksonov, I. (2021). Biomarkers of oxidative stress in the muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum) after in vitro treatment by extracts derived from stalks and roots of greater celandine (Chelidonium majus L.). Naukovo-tekhnichnyi biuleten Instytutu tvarynnytstva NAAN–  Scientific and Technical Bulletin of the Institute of Animal Science of the National Academy of Agrarian Science of Ukraine, Kharkov, 126, 4–14.
  36. Tripathi, R., Gupta, R., Sahu, M., Srivastava, D., Das, A., Ambasta, R. K., & Kumar, P. (2022). Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. Environmental Science and Pollution Research International, 29(41), 62160–62207.
  37. Warowicka, A., Qasem, B., Dera-Szymanowska, A., Wołuń-Cholewa, M., Florczak, P., Horst, N., Napierała, M., Szymanowski, K., Popenda, Ł., Bartkowiak, G., Florek, E., Goździcka-Józefiak, A., & Młynarz, P. (2021). Effect of Protoberberine-Rich Fraction of Chelidonium majus L. on Endometriosis Regression. Pharmaceutics. 13(7), 931.
  38. Zar, J. H. (1999). Biostatistical Analysis. 4th ed., Prentice Hall Inc., New Jersey.
  39. Zielińska, S., Jezierska-Domaradzka, A., Wójciak-Kosior, M., Sowa, I., Junka, A., & Matkowski, A. M. (2018). Greater Celandine’s Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today’s Pharmacology. Frontiers in Pharmacology, 9, 299.
  40. Zou, C., Lv, C., Wang, Y., Cao, C., & Zhang, G. (2017). Larvicidal activity and insecticidal mechanism of Chelidonium majus on Lymantria dispar. Pesticide Biochemistry and Physiology, 142, 123–132.