Digestibility of organic substances in different sections of the digestive tract of bulls with a reduction of the amount of soluble protein in the diet

DOI: 10.32900/2312-8402-2021-125-140-153

Petrenko V. I.,
Candidate of Biological Sci., Senior Researcher,
Kozyr V. S.,
Doctor of Agricultural Sci., Professor, Academician of NAAS,
Dimchya G. G.,
Candidate of Agricultural Sci., Senior Researcher,
Maystrenko A. N.,
Candidate of Agricultural Sci., Senior Researcher,
State Institution «Institute of Grain Crops of NAAS of Ukraine»

Keywords: forganic matter, protein, solubility, digestibility, availability, complex stomach, small intestine, large intestine


On the bulls of red steppe breed with duodenal and ileocecal cannulas when feeding iso-enery and isoprotein diets with different amounts of soluble protein (SP) and degradable protein (DP) studied conversions of dry matter (DМ),  organic matter (OM) and crude protein (CP) separately in the complex stomach, small (SI) and large (LI) parts of the intestine. Evaluated the nitrogen balance by the amount of protein absorbed into the SI, the losses of nitrogen with urine – by the proportion of urea nitrogen.
The diet consisted of awnless bonfire hay, pea deer, and mineral supplements.
Various amounts of SP in the diets were achieved by feeding natural pea dough (control) and roasted pea dough at a temperature of 105°C (experiment).
In a compound stomach, the digestibility CP on the experimental diet with a reduced level of SP was by 10 % less.  In the control diet with a high level of SP is more in SI received of ammonia nitrogen.
In SI digestibility of DM and OM on the experimental diet are by 8–10 % more.
Amounts of DM, OM and CP in LI on a control diet decreased by 5.6–7.5 %, in the experimental diet – not changed.
On an experimental diet with an increased level of NSP, the SI received more nitrogen and was digested by 10 % more than in the control. The calculated nitrogen balance according to the classical scheme did not reflect the true amount of it assimilated in the body.
On the control diet with an increased level of SP, there was the devaluation of the protein in the feeds and oblasting due to the larger release in urea by 40 % of the nitrogen in the form of urea.


  1. Verite, R., Journet, M., & Jarrige, R. (1979). A new system for the protein feeding of ruminants: The PDI system. Livestock Prod. Sci. 6, 349–367.
  2. Vasilevskiy, N. V., Berus, M. V., Zlobina, G. S., & Tsyupko, V. V. (1992). Novyy sposob otsenki vliyaniya kolichestva i kachestva syrogo proteina korma na yego perevarivaniye v zheludochno-kishechnom trakte bychkov [A new way to assess the effect of the quantity and quality of feed crude protein on its digestion in the gastrointestinal tract of bull calves.] Novoye metodakh zootekhnicheskikh issledovaniy : matematicheskaja konferencija – New in zootechnical research methods. mathematical conference. Khar’kov, 26–30. [in Russian].
  3. Zlobina, G. S., Berus, M. V., Vasilevskiy, N. V., Bublik, V. N., & Tsyupko, V. V. (1992). Metody otsenki syrogo proteina korma dlya perevarivaniya v tonkom kishechnike i sistema normirovaniya proteina dlya krupnogo rogatogo skota [Methods for evaluating the crude protein of feed for small intestine digestion and a protein rationing system for cattle.]. Novoye metodakh zootekhnicheskikh issledovaniy : matematicheskaja konferencija – New in zootechnical research methods. mathematical conference. Khar’kov, 8–13. [in Russian].
  4. Tamminga, S., van Straalen, W. M., Subnel, A. P. J., Meijer, R. G. M., Steg, A., Wever, C. J. G. & Blok M. C. (1994). The Dutch protein evaluation system: the DVE/OEB-system. Livest. Prod. Sci., 40, 139–155. https://doi.org/10.1016/0301-6226(94)90043-4.
  5. NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th rev.ed. Natl. Acad. Press, Washington, DC.
  6. Fox, D. G., Tedeschi, L. O., Tylutki, T. P., Russel, J. B., van Amburg, M. E., Chase, L. E., Pell, A. N., & Overton, T. R. (2004). The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 112. 29–78. https://doi.org/10.1016/j.anifeedsci.2003.10.006.
  7. Bateman, H. G. H., Clark, J. H., & Murphy, M. R. (2005). Development of a system to predict feed protein flow to the small intestine of cattle. J. Dairy Sci.,88, 282–295. https://doi.org/10.3168/jds.S0022-0302(05)72686-2.
  8. Van Duinkerken, G., Blok, M. C., Bannink, A., Cone, J. W., Dijkstra, J., Van Vuuren, A. M., & Tamminga, S. (2011). Update of the Dutch protein evaluation system for ruminants: The DVE/OEB2010 system. J. Agric. Sci., 149, 351–367. https://doi.org /10.1017/S00218596 0000912.
  9. Daniel, J., Friggens, N., Chapoutot, P., Van Laar, H., & Sauvant, D. (2016). Milk yield and milk composition responses to change in predicted net energy and metabolizable protein: A meta-analysis. Animal, 10 (12), 1975–1985. DOI:10.1017/S1751731116001245
  10. Sauvant, D., & Noziere, P. (2016). Quantification of the main digestive processes in ruminants: The equations involved in the renewed energy and protein feed evaluation systems. Animal 10:755-770. https://doi.org/10.1017/S1751731115002670.
  11. Daniel, J. B., Friggens, N., van Laar, H., Ferris, C. P., & Sauvant, D. (2017). A method to estimate cow potential and subsequent responses to energy and protein supply according to stage of lactation. J. Dairy Sci., 100, 5, 3641–3657. https://doi.org./10.3168/jds.2016-11938.
  12. Lapierre, H., Larsen, M., Sauvant, D., van Amburgh, M. E., & Van Duinkerken, G. (2018). Review: Converting nutritional knowledge into feeding practices. A case study comparing different protein feeding systems for dairy cows. Animal, 12 (2), 457–466. https://doi.org/10.1017/S1751731118001763.
  13. INRA (2018). INRA feeding system for ruminants. Wageningen Academic Publishers. Wageningen, the Netherlands.
  14. Daniel, J. B., van Laar, H., Dijkstra, J., Sauvant, D. (2020). Evaluation of predicted ration nutritional values by NRC (2001) and INRA (2018) feed evaluation systems, and implications for the prediction of milk response. J. Dairy Sci., 103, 11268–11284. https://doi.org/10.3168/jds.2020-18286.
  15. Sineshchekov, A. D. (1965). Biologiya pitaniya sel’skokhozyaystvennykh zhivotnykh [Nutritional biology of farm animals]. Moscow : Kolos [in Russian].
  16. Zverev, A. I., & Kharchenko, A. G. (1990). Rastvorimost’ kormovogo proteina – faktor ratsional’nogo yego ispol’zovaniya v kormlenii doynykh korov [Solubility of fodder protein is a factor of its rational use in feeding dairy cows] Molochno-myasnoye skotovodstvo – Dairy and beef cattle breeding. Kyiv : Urozhai, 77, 54–58. [in Russian].
  17. Conway, E. J. (1957). Microdiffusion Analysis and Volumetric Error. 4th Ed., Crosly Lockwood, London, 162–174.
  18. Kaplan, V. A., Sviridenko, V. A. (1966). Metodika opredeleniya mocheviny v plazme krovi, moloke i moche [Method for determination of urea in blood plasma, milk and urine]. Metodiki issledovaniy v zhivotnovodstve – Research methods in animal husbandry : Abstracts of Papers. Khar’kov, 104–108. [in Russian].
  19. Meylus, P. I. (1964). Izmeneniya nekotorykh pokazateley metabolizma v rubtse, fiziologicheskoye sostoyaniye i produktivnost’ korov pri skarmlivanii im mocheviny razlichnymi sposobami [Changes in some indicators of metabolism in the rumen, physiological state and productivity of cows when feeding them urea in various ways]: Extended abstract  of  candidate’s thesis, Kaunas. [in Russian].
  20. Sviridenko, V. A., Kaplan V. A. (1966). Otsenka usvoyayemosti zhvachnymi zhivotnymi azota korma po dole azota mocheviny v obshchem azote mochi [Evaluation of the assimilation of feed nitrogen by ruminants by the proportion of urea nitrogen in the total nitrogen of urine.]. Metodicheskiye issledovaniya v zhivotnovodstve – methodological research in animal husbandry : Abstracts of Papers. Khar’kov, 108–111. [in Russian].
  21. Rokitskiy, P. F. (1967). Biologicheskaya statistika [Biological statistics]. Minsk : Vyshjejshaja shkola [in Russian].