Comparison of different housing systems for cows during heat stress

DOI: 10.32900/2312-8402-2021-125-78-91

Borshch O. O.,
PhD, docent,,
Borshch O. V.,
PhD, docent,,
Bila Tserkva National Agrarian University

Keywords: dairy cows, keeping technology, temperature, heat stress, comfort, breathing heaviness


 The work aimed to study the effect of high temperatures on the comfort of keeping Holstein cows with different options for loose housing. The study of the effect of high temperatures on the comfort of keeping cows was carried out in the period from 02.07–12.07 2018 in the Kyiv region. Three farms were selected with loose cow housing systems and various options for the level of animal comfort. The first option is loose housing in an easy-to-collect room. The second option is loose keeping in an easily collectible room with fans and a water irrigation system. The third option is for walking and feeding grounds with sheds. During the daily observation period, the main indicators of the microclimate in the recreation area (air temperature, relative humidity, wind speed), respiration rate, assessment of the severity of respiration and heat load indices were determined. The best performance among the studied housing technologies was recorded on a farm using irrigation and ventilation systems. During the period of the highest heat stress (12.00–16.00 h), the air temperature (Т) did not exceed 29.05±0.50 °С, the respiratory rate – 77.0±1.33 times/mins, the environmental stress index (ESI) – 39.07±0.14 °С, the heat load index (HLI) – 73.56±2.48. The lowest indices of the comfort of keeping were in an easily assembled room: T – 31.1±2.24 °C, respiratory rate – 82.0±1.80 times/min, ESI – 41.62±0.17 °C, HLI – 77.88±0.64. Intermediate indicators were for the content on the stern area: T – 30.3±2.31 °C, respiratory rate – 76.0±1.82 times/mins, ESI – 41.62±0.17 °C, HLI – 77.42±0.51. In all options for keeping cows, an increase in temperature to an average daily +27.7 °C became a significant stress factor that significantly influenced the dynamics of the respiration rate, the assessment of the severity of respiration, the value of ESI and HLI. It was found that for keeping cows in buildings using irrigation and ventilation systems, as well as on walking grounds, the indicators of the temperature-humidity index (THI), frequency and severity of respiration during the period of maximum temperature load (12.00–16.00 h) were lower than those for keeping in an easily assembled room.


  1. WMO: WMO Statement on the state of the global climate in 2017 (2018). WMO-No.1212, Publications Board World Meteorological Organization (WMO), World Meteorological Organization, Geneva, Switzerland.
  2. Kjellström, E., Nikulin, G., Strandberg, G., Christensen, O. B., Jacob, D., Keuler, K., Lenderink, G., van Meijgaard, E., Schär, C., Somot, S., Sørland, S. L., Teichmann, C., & Vautard, R. (2018). European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models. Earth System Dynamics, 9, Р. 459–478.
  3. Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130, 57–69. DOI: 10.1016/j.livsci.2010.02.011
  4. Food and Agriculture Organization of the United Nations (FAO): The Impact of Disasters on Agriculture – Assessing the information gap, available at:, 2017.
  5. Borshch, O. O., Borshch, O. V., Kosior, L. T., Pirova, L. V., & Lastovska, I.O. (2017). Influence of various litter materials and premises characteristics on the comfort and behavior of cows. Ukrainian Journal of Ecology, 7 (4), 529–535. DOI: 10.15421/2017_156
  6. Borshch, O. O., Borshch, O. V., Donchenko, T. A., Kosior, L. T., & Pirova, L.V. (2017). Influence of low temperatures on behavior, productivity and bioenergy parameters of dairy cows kept in cubicle stalls and deep litter system. Ukrainian Journal of Ecology, 7 (3), 73–77. DOI: 10.15421/2017_51
  7. Borshch, A. A., Ruban, S., Borshch, A. V., & Babenko, O. (2019). Effect of three bedding materials on the microclimate conditions, cows behavior and milk yield. Polish Journal of Natural Sciences, 34, 19–31.
  8. Ruban, S., Borshch, O. O., Borshch, O. V., Orischuk, O., Balatskiy, Y., Fedorchenko, M., Kachan, A., & Zlochevskiy, M. (2020). Respiration rate, breathing condition and productivity of dairy cows. Animal Science Papers and Reports, 38 (1), 61–72.
  9. Hempel, S., Menz, C., Pinto, S., Galán, E., Janke, D., Estellés, F., Müschner-Siemens, T., Wang, X., Heinicke, J., Zhang, G., Amon, B., del Prado, A., & Amon, T. (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts. Earth System Dynamics, 10, 859–884.
  10. Borshch, O. O., Gutyj, B. V., Sobolev, O. I., Borshch, O. V., Ruban, S. Yu., Bilkevich, V. V., Dutka, V. R., Chernenko, O. M., Zhelavskyi, M. M., & Nahirniak, T. Adaptation strategy of different cow genotypes to the voluntary milking system. Ukrainian Journal of Ecology, 10 (1), 145–150. DOI: 10.15421/2020_23.
  11. Ruban, S. Yu., Borshch, O. V., & Borshch, O. O. (2017). Suchasni tekhnolohiyi vyrobnytstva moloka. (osoblyvosti ekspluatatsiyi, tekhnolohichni rishennya, eskizni proekty) [Modern milk production technologies. (peculiarities of operation, technological decisions, sketch designs)]. Kharkiv: STYLIZDAT [in Ukrainian].
  12. Borshch, O.O., Gutyj, B.V., Borshch, O.V., Sobolev, O.I., Chernyuk, S.V., Rudenko, O.P., Kalyn, B.M., Lytvyn, N.A., Savchuk, L.B., Kit, L.P., Nahirniak, T.B., Kropyvka, S.I., & Pundyak, T.O. (2020). Environmental pollution caused by the manure storage. Ukrainian Journal of Ecology, 10(3), P. 110–114. DOI: 10.15421/2020_142
  13. Danshy`n, V. O., Ruban, S. Yu., Fedota, O. M., Mitioglo, L. M., & Borshch, O.O. (2016). Ocinka pleminnoyi cinnosti bugayiv-plidny`kiv molochny`x porid. [Assessment of the breeding value of dairy bulls.] Zbirny`k naukovy`x pracz` BNAU «Texnologiya vy`robny`cztva i pererobky` produkciyi tvary`nny`cztva» – Collection of scientific works of BNAU “Technology of production and processing of livestock products, 2, 110–116 [in Ukrainian].
  14. Ruban, S. Yu., Borshсh, O. O., Fedota, O. M., & Borshh, O. V. (2018). Suchasni metody` selekciyi u tvary`nny`cztvi [Modern methods of selection in animal husbandry. Exterior assessment manual in dairy farming.]. Kyev: CzP «Kompry`nt» 149 [in Ukrainian].
  15. Borshсh, O. V. (2014). Osobly`vosti doyinnya koriv na roboty`zovanij ustanovci [Features of milking cows on a robotic installation]. Zbirnyk naukovykh prats Bilotserkivskoho natsionalnoho ahrarnoho universytetu. Seriia: «Tekhnolohiia vyrobnytstva i pererobky produktsii tvarynnytstva» [Collection of scientific works of Bila Tserkva National Agrarian University. Series: “Technology of production and processing of livestock products”]. Bila Tserkva, 2 (112), 131–135 [in Ukrainian].
  16. Dikmen, S. J., & Hansen, S. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science, 92, 109–116. DOI: 10.3168/jds.2008-1370.
  17. Menconi, M. E. & Grohmann, D. (2014). Model integrated of life-cycle costing and dynamic thermal simulation (mild) to evaluate roof insulation materials for existing livestock buildings. Energy and Buildings, 81, 48–58. DOI: 10.1016/j.enbuild.2014.06.005
  18. Smith, J. F., Bradford, B. J., Harner, J. P., Potts, J. C., Allen, J. D., Overton, M. W., Ortiz, X. A., & Collier, R. J. (2016). Short communication: Effect of cross ventilation with or without evaporative pads on core body temperature and resting time of lactating cows. Journal of Dairy Science, 99, 1495–1500. DOI: 10.3168/jds.2015-9624
  19. Gebremedhin, K. G., Wu, B., & Perano, K. (2016). Modeling conductive cooling for thermally stressed dairy cows. Journal of Thermal Biology, 56, 91–99. DOI:10.1016/ j.jtherbio.2016.01.004
  20. Borshch, O. O., Ruban, S. Yu., Gutyj, B. V., Borshch, O. V., Sobolev, O. I., Kosior, L. T., Fedorchenko, M. M., Kirii, A. A., Pivtorak, Y. I., Salamakha, I. Yu., Hordiichuk, N. M., Hordiichuk, L. M., Kamratska, O. I., Denkovich, B. S. (2020). Comfort and cow behavior during periods of intense precipitation. Ukrainian Journal of Ecology, 10(6), 98–102. DOI : 10.15421/2020_265
  21. Dikmen, S. J., & Hansen, S. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science, 92, 109–116. DOI: 10.3168/jds.2008-1370.
  22. Moran, D. S., Pandolf, K. B., & Shapiro Y. (2001). An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). Journal of Thermal Biology, 26, 427–431. DOI:10.1016/S0306-4565(01)00055-9
  23. Gaughan, J. B., Mader, T. L., Holt, S. M., Hahn, G. L., & Young, B. A. (2002). Review of current assessment of cattle and microclimate during periods of high heat load. Animal Production of Australia, 24, 77–80.
  24. Gaughan, J. B., Mader, T. L., Holt, S. M., & Lisle, A. (2008). A new heat load index for feedlot cattle. Faculty Papers and Publications in Animal Science, 1(1), 226234.
  25. Vatskyi, V. F. (2005). Alhorytmy biometrii. Metodychni rekomendatsii. [Biometrics algorithms. Guidelines.]. Poltava [in Ukrainian].
  26. Hulsen, J. (2006). Cow signals. A practical guide for dairy farm management.