Biomarkers of oxidative stress in the muscle tissue of rainbow trout (oncorhynchus mykiss walbaum) after in vitro treatment by extracts derived from stalks and roots of greater celandine (chelidonium majus l.)

DOI: 10.32900/2312-8402-2021-126-4-14

Stefanowski N.,
Tkachenko H.,
Doctor of Biological Sciences,,
Kurhaluk N.,
Doctor of Biological Sciences,,
Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland,
Aksonov Ie.,
Ph. D.,,
The Institute of Animal Science NAAS, Kharkiv, Ukraine

Keywords: rainbow trout, total antioxidant capacity, lipid peroxidation, oxidatively modified proteins, Chelidonium majus, muscle tissue


Consistent with our previous studies, we continue to evaluate the antioxidant potential of Greater celandine (Chelidonium majus L), a representative of the Papaveraceae family, collected from northern Poland using the model of muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum). Therefore, in the present study, oxidative stress biomarkers [2-thiobarbituric acid reactive substances (TBARS), protein oxidative modification carbonyl derivative content, total antioxidant capacity (TAC)] were used to evaluate the antioxidant activity of extracts (final concentration 5 mg/mL) derived from stems and roots of C. majus. Rainbow trout muscle tissue was used in this study. Phosphate buffer was used as a positive control (blank). The results of the current study showed that stem and root extracts exhibited cytotoxic effects on cellular structures of muscle tissue by increasing the level of the lipid peroxidation biomarkers. These results suggest the possibility of using C. majus extract at 5 mg/mL as a source of pro-oxidant compounds and warrant further studies to evaluate their therapeutic potential. Levels of aldehydic and ketonic derivatives of oxidatively modified proteins and total antioxidant capacity were not significantly changed after in vitro incubation with the extracts derived from stalks and roots of C. majus. Screening of species of the family Papaveraceae for other biological activities, including antioxidant activity, is essential and may be effective in the search for preventive measures in the pathogenesis of some diseases, as well as in the prevention and treatment of some disorders in medicine and veterinary.


  1. Chen, G., Tan, M. L., Li, K. K., Leung, P. C., & Ko, C. H. (2015). Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. J. Ethnopharmacol., 175, 14–20.
  2. Colombo, M., & Bosisio, E., (1996). Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharm Res., 33, 127–134.
  3. Dubinina, E. E., Burmistrov, S. O., Khodov, D. A., & Porotov, I. G. (1995). Okislitel’naia modifikatsiia belkov syvorotki krovi cheloveka, metod ee opredeleniia [Oxidative modification of human serum proteins. A method of determining it]. Vopr. Med. Khim., 41(1), 24–26. [in Russian].
  4. Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med., 11(1), 81–128.
  5. Galaktionova, L. P., Molchanov, A. V., El’chaninova, S. A., & Varshavskiĭ, B. Ia. (1998). Sostoianie perekisnogo okisleniia u bol’nykh s iazvennoĭ bolezn’iu zheludka i dvenadtsatiperstnoĭ kishki [Lipid peroxidation in patients with gastric and duodenal peptic ulcers]. Klin. Lab. Diagn., (6), 10–14. [Russian].
  6. Grimsrud, P. A., Xie, H., Griffin, T. J., & Bernlohr, D. A. (2008). Oxidative stress and covalent modification of protein with bioactive aldehydes. J. Biol. Chem., 283, 21837–21841.
  7. Halliwell, B., & Gutteridge, J. M. (2015). Free Radicals in Biology & Medicine. 5th Ed., Oxford University Press, Oxford, UK.
  8. Ikuta, A., & Itokawa, H. (1988). Berberine: production through plant (Thalictrum spp.) cell cultures, in Medicinal and Aromatic Plants. Biotechnology in Agriculture and Forestry, 4, ed. Bajaj Y. P. S., Berlin; Heidelberg: Springer, 282–293.
  9. Jakovljevic, Z. D., Stankovic, S. M., & Topuzovic, D. M. (2013). Seasonal variability of Chelidonium majus L. secondary metabolites content and antioxidant activity. EXCLI J., 12, 260–268.
  10. Kamyshnikov, V. S. (2004). A reference book on the clinic and biochemical researches and laboratory diagnostics. MEDpress-inform, Moscow. [Russian].
  11. Laster, L. L., & Lobene, R. R. (1990). New perspectives on sanguinaria clinicals: individual toothpaste and oral rise testing. J. Can. Dent. Assoc., 56, 19–30.
  12. Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., & Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol., 186, 464–478.
  13. Malikova, J., Zdarilova, A., Hlobilkova, A., & Ulrichova, J. (2006). The effect of chelerythrine on cell growth, apoptosis, cell cycle in human normal cancer cells in comparison with sanguinarine. Cell Biol. Toxicol., 22, 439–453.
  14. Manske, H. F., & Holmes H. L. (1995). The Alkaliods: Chemistry and Physiology. New York, NY: Academic Press.
  15. Masuok, N., Matsuda, M., & Kubo, I. (2012). Characterisation of the antioxidant activity of flavonoids. Food Chem., 131, 541–545.
  16. Mulubagal, V., & Tsay, H. (2004). Plant cell cultures – an alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2(1), 29–48.
  17. Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., Chapple, S., Cohen, G., Feher, J., Grune, T., Lengyel, G., Mann, G. E., & Pamplona, R. (2010). Pathological aspects of lipid peroxidation. Free Radic. Res., 44(10), 1125–1171.
  18. Negre-Salvayre, A., Coatrieux, C., Ingueneau, C., & Salvayre, R. (2008). Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol., 153(1): 6–20.
  19. Pizzimenti, S., Ciamporcero, E., Daga, M., Pettazzoni, P., Arcaro, A., Cetrangolo, G., Minelli, R., Dianzani, C., Lepore, A., Gentile, F., & Barrera, G. (2013). Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol., 4, 242.
  20. Reed, T., Perluigi, M., Sultana, R., Pierce, W. M., Klein, J. B., Turner, D. M., Coccia, R., Markesbery, W. R., & Butterfield, D. A. (2008). Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol. Dis., 30(1), 107–120.
  21. Rietveld, A., & Wiseman, S. (2003). Antioxidant effects of tea: Evidence from human clinical trials. J. Nutr. 133, 3285S–3292S.
  22. Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annu. Rev. Biochem., 86, 715–748.
  23. Stefanowski, N., Tkachenko, H., & Kurhaluk, N. (2021). Effects of extracts derived from roots and stems of Chelidonium majus L. on oxidative stress biomarkers in the model of equine plasma. Agrobiodivers. Improv. Nutr. Health Life Qual., 5(2), 197–208.
  24. Zar, J. H. (1999). Biostatistical Analysis. 4th ed., Prentice Hall Inc., New Jersey.
  25. Zielińska, S., Jezierska-Domaradzka, A., Wójciak-Kosior, M., Sowa, I., Junka, A., & Matkowski, A. M. (2018). Greater Celandine’s Ups and Downs – Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today’s Pharmacology. Front Pharmacol., 9, 299.