BIOMARKERS OF LIPID AND PROTEIN OXIDATION IN THE MUSCLE TISSUE OF RAINBOW TROUT (ONCORHYNCHUS MYKISS WALBAUM) TREATED IN VITRO WITH ROOT AND STEM EXTRACTS OF GREATER CELANDINE (CHELIDONIUM MAJUS L.)

DOI: 10.32900/2312-8402-2024-131-202-214

Tetiana Tiupova,
student,
https://orcid.org/0000-0003-0929-8205,
Halina Tkaczenko,
Doctor of Biological Sciences,
https://orcid.org/0000-0003-3951-9005,
Natalia Kurhaluk,
Doctor of Biological Sciences,
https://orcid.org/0000-0002-4669-1092,
Institute of Biology,
Pomeranian University in Słupsk, Poland,
Oleksandr Lukash,
Doctor of Biological Sciences,
https://orcid.org/0000-0003-2702-6430,
T.H. Shevchenko National University “Chernihiv Colehium”, Chernihiv, Ukraine

Keywords: Greater celandine (Chelidonium majus L.), rainbow trout (Oncorhynchus mykiss Walbaum), lipid peroxidation, oxidatively modified proteins, total antioxidant capacity


The main aim of the present study was to evaluate the oxidative stress biomarkers [TBARS, carbonyl derivatives of oxidative modification of proteins (OMP), total antioxidant capacity (TAC)] in the muscle tissue of rainbow trout (Oncorhynchus mykiss Walbaum) after in vitro incubation with the root and stem extracts derived from greater celandine (Chelidonium majus L., CM) (at final concentrations of 5 and 2.5 mg/mL) collected in South Park in Słupsk in the Pomeranian Province (northern part of Poland). The current study demonstrated the increase in TBARS levels after in vitro incubation of rainbow trout muscle tissue with stem and root extracts of CM at a final concentration of 5 mg∙mL-1 compared to untreated control samples. There was a statistically significant increase in TBARS levels compared to controls. We obtained similar results after in vitro incubation with root and stem extracts of CM at a final concentration of 2.5 mg∙mL-1 with rainbow trout muscle tissue, where we also observed a statistically non-significant increase in TBARS levels. There was a decrease in the levels of aldehydic derivatives and ketonic derivatives of OMP in muscle tissue after incubation with extracts from roots and stems of CM at final concentrations of 5 mg∙mL-1 compared to untreated controls. There was a decrease in the levels of aldehydic and ketonic derivatives of OMP in muscle tissue after incubation with extracts from roots and stems of CM at final concentrations of 2.5 mg∙mL-1 compared to untreated controls. TAC levels in rainbow trout muscle tissue after in vitro incubation with extracts of CM roots and stems at final concentrations of 5 and 2.5 mg∙mL-1 were not statistically significantly increased. The present study investigated the antioxidant potential of CM. Extracts from CM roots and stems exert their activity by inhibiting protein damage.

 

References

Aguilar Diaz De Leon, J., & Borges, C. R. (2020). Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. Journal of Visualized Experiments: JoVE, (159), 10.3791/61122. https://doi.org/10.3791/61122.

Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701.

Boyko, V. N., & Zholus, R. B. (1998). A comparative evaluation of the influence of the complex drug Ukrain and its components on the effects of radiation. Drugs under Experimental and Clinical Research, 24(5-6), 331–333.

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1006/abio.1976.9999.

Capistrano, I. R., Wouters, A., Lardon, F., Gravekamp, C., Apers, S., & Pieters, L. (2015). In vitro and in vivo investigations on the antitumour activity of Chelidonium majus. Phytomedicine: international journal of phytotherapy and phytopharmacology, 22(14), 1279–1287. https://doi.org/10.1016/j.phymed.2015.10.013.

Dubinina, E. E., Burmistrov, S. O., Khodov, D. A., & Porotov, I. G. (1995). Okislitel’naia modifikatsiia belkov syvorotki krovi cheloveka, metod ee opredeleniia [Oxidative modification of human serum proteins. A method of determining it]. Voprosy meditsinskoi khimii, 41(1), 24–26. (in Russian)

Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Reviews. Drug Discovery, 20(9), 689–709. https://doi.org/10.1038/s41573-021-00233-1.

Galaktionova, L. P., Molchanov, A. V., El’chaninova, S. A., & Varshavskiĭ, B. I.a (1998). Sostoianie perekisnogo okisleniia u bol’nykh s iazvennoĭ bolezn’iu zheludka i dvenadtsatiperstnoĭ kishki [Lipid peroxidation in patients with gastric and duodenal peptic ulcers]. Klinicheskaia Laboratornaia Diagnostika, (6), 10–14. (in Russian)

Galina, J., Yin, G., Ardó, L., & Jeney, Z. (2009). The use of immunostimulating herbs in fish. An overview of research. Fish Physiology and Biochemistry, 35(4), 669–676. https://doi.org/10.1007/s10695-009-9304-z.

Gilca, M., Gaman, L., Panait, E., Stoian, I., & Atanasiu, V. (2010). Chelidonium majus – an integrative review: traditional knowledge versus modern findings. Forschende Komplementarmedizin (2006), 17(5), 241–248. https://doi.org/10.1159/000321397.

Harikrishnan, R. (2003) Herbal Treatment for Ulcerative Disease Induced by Aeromonas hydrophila in Goldfish (Carassius auratus). Ph.D. Thesis, Bharathidasan University, Tiruchirapalli, India.

Huang, X. Y., Shao, Z. X., An, L. J., Xue, J. J., Li, D. H., Li, Z. L., & Hua, H. M. (2019). New lignanamides and alkaloids from Chelidonium majus and their anti-inflammation activity. Fitoterapia, 139, 104359. https://doi.org/10.1016/j.fitote.2019.104359.

Jakovljevic, Z. D., Stankovic, S. M., & Topuzovic, D. M. (2013). Seasonal variability of Chelidonium majus L. secondary metabolites content and antioxidant activity. EXCLI Journal, 12, 260–268.

Jones D. P. (2008). Radical-free biology of oxidative stress. American Journal of Physiology. Cell Physiology, 295(4), C849–C868. https://doi.org/10.1152/ajpcell.00283.2008.

Kamyshnikov V. S. (2004). A reference book on clinical and biochemical research and laboratory diagnostics. MEDpress-inform, Moscow.

Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., & Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464–478. https://doi.org/10.1016/0076-6879(90)86141-h.

Liao, W., Huang, L., Han, S., Hu, D., Xu, Y., Liu, M., Yu, Q., Huang, S., Wei, D., & Li, P. (2022). Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses, 14(6), 1281. https://doi.org/10.3390/v14061281.

Mikołajczak, P. Ł., Kędzia, B., Ożarowski, M., Kujawski, R., Bogacz, A., Bartkowiak-Wieczorek, J., Białas, W., Gryszczyńska, A., Buchwald, W., Szulc, M., Wasiak, N., Górska-Paukszta, M., Baraniak, J., Czerny, B., & Seremak-Mrozikiewicz, A. (2015). Evaluation of anti-inflammatory and analgesic activities of extracts from herb of Chelidonium majus L. Central-European Journal of Immunology, 40(4), 400–410. https://doi.org/10.5114/ceji.2015.54607.

Mosihuzzaman M. (2012). Herbal medicine in healthcare – an overview. Natural Product Communications, 7(6), 807–812.

Nadova, S., Miadokova, E., Alfoldiova, L., Kopaskova, M., Hasplova, K., Hudecova, A., Vaculcikova, D., Gregan, F., & Cipak, L. (2008). Potential antioxidant activity, cytotoxic and apoptosis-inducing effects of Chelidonium majus L. extract on leukemia cells. Neuro Endocrinology Letters, 29(5), 649–652.

Nile, S. H., Wang, H., Nile, A., Lin, X., Dong, H., Venkidasamy, B., Sieniawska, E., Enkhtaivan, G., & Kai, G. (2021). Comparative analysis of metabolic variations, antioxidant potential and cytotoxic effects in different parts of Chelidonium majus L. Food and Chemical Toxicology: an international journal published for the British Industrial Biological Research Association, 156, 112483. https://doi.org/10.1016/j.fct.2021.112483.

Park, J. E., Cuong, T. D., Hung, T. M., Lee, I., Na, M., Kim, J. C., Ryoo, S., Lee, J. H., Choi, J. S., Woo, M. H., & Min, B. S. (2011). Alkaloids from Chelidonium majus and their inhibitory effects on LPS-induced NO production in RAW264.7 cells. Bioorganic & Medicinal Chemistry Letters, 21(23), 6960–6963. https://doi.org/10.1016/j.bmcl.2011.09.128.

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763.

Ra Kasem, N., A Mannaa, F., G Abdel-Wahhab, K., H Mourad, H., & F Gomaa, H. (2022). Preventive Efficiency of Chelidonium majus Ethanolic Extract Against Aflatoxin B1 Induced Neurochemical Deteriorations in Rats. Pakistan Journal of Biological Sciences: PJBS, 25(3), 234–244. https://doi.org/10.3923/pjbs.2022.234.244.

Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B., Sasal, P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture, 433, 50-61. http://dx.doi.org/10.1016/j.aquaculture.2014.05.048.

Sheu, S. S., Nauduri, D., & Anders, M. W. (2006). Targeting antioxidants to mitochondria: a new therapeutic direction. Biochimica et Biophysica Acta, 1762(2), 256–265. https://doi.org/10.1016/j.bbadis.2005.10.007.

Sies H. (2021). Oxidative eustress: On constant alert for redox homeostasis. Redox Biology, 41, 101867. https://doi.org/10.1016/j.redox.2021.101867.

Valladão, G. M., Gallani, S. U., & Pilarski, F. (2015). Phytotherapy as an alternative for treating fish disease. Journal of Veterinary Pharmacology and Therapeutics, 38(5), 417–428. https://doi.org/10.1111/jvp.12202.

Vavrecková, C., Gawlik, I., & Müller, K. (1996). Benzophenanthridine alkaloids of Chelidonium majus; I. Inhibition of 5- and 12-lipoxygenase by a non-redox mechanism. Planta Medica, 62(5), 397–401. https://doi.org/10.1055/s-2006-957924

Zar J. H. (1999). Biostatistical Analysis. 4th ed., Prentice Hall Inc., New Jersey.

Zhang, W., Zhao, J., Ma, Y., Li, J., & Chen, X. (2022). The effective components of herbal medicines used for prevention and control of fish diseases. Fish & Shellfish Immunology, 126, 73–83. https://doi.org/10.1016/j.fsi.2022.05.036.

Zielińska, S., Jezierska-Domaradzka, A., Wójciak-Kosior, M., Sowa, I., Junka, A., & Matkowski, A. M. (2018). Greater Celandine’s Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today’s Pharmacology. Frontiers in Pharmacology, 9, 299. https://doi.org/10.3389/fphar.2018.00299.

Zielińska, S., Wójciak-Kosior, M., Dziągwa-Becker, M., Gleńsk, M., Sowa, I., Fijałkowski, K., Rurańska-Smutnicka, D., Matkowski, A., & Junka, A. (2019). The Activity of Isoquinoline Alkaloids and Extracts from Chelidonium majus against Pathogenic Bacteria and Candida sp. Toxins, 11(7), 406. https://doi.org/10.3390/toxins11070406.