AUTOPHAGIC FUNCTION OF THE LIVER OF VACCINATED RAINBOW TROUT (ONCORHYNCHUS MYKISS WALBAUM) FOLLOWING YERSINIA RUCKERI INFECTION

DOI: 10.32900/2312-8402-2025-133-196-205

Halina TKACZENKO,
Doctor of Biological Sciences,
https://orcid.org/0000-0003-3951-9005,
Natalia KURHALUK,
Doctor of Biological Sciences,
https://orcid.org/0000-0002-4669-1092,
Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland,
Joanna GRUDNIEWSKA,
Ph.D.,
https://orcid.org/0000-0002-4272-8337,
National Inland Fisheries Research Institute, Rutki, Poland,
Agnieszka PĘKALA-SAFIŃSKA,
Doctor of Veterinary Sciences,
https://orcid.org/0000-0002-5515-8329,
Poznań University of Life Sciences, Poznań, Poland,
Elżbieta TERECH-MAJEWSKA,
Ph.D.,
https://orcid.org/0000-0001-9093-0049,
University of Warmia and Mazury in Olsztyn, Poland

Keywords: autophagy, liver, rainbow trout, Yersinia ruckeri, lysosomal enzymes, vaccination, bacterial infection, metabolic homeostasis


The liver plays a critical role in maintaining metabolic homeostasis and immune defence in fish, particularly in response to bacterial infections. Autophagy, a conserved cellular process essential for homeostasis and pathogen clearance, has been implicated in host defence mechanisms. However, the role of autophagy in the liver of vaccinated fish following pathogen exposure remains largely unexplored. Yersinia ruckeri, the causative agent of enteric redmouth disease (ERM), poses a significant threat to rainbow trout (Oncorhynchus mykiss Walbaum) aquaculture, primarily affecting the liver, spleen and kidneys. Vaccination is a widely used preventive strategy, but its effect on autophagic activity during infection is not well understood. The aim of this study was to evaluate the autophagic response in the liver of vaccinated rainbow trout following Y. ruckeri infection by assessing the activity of four lysosomal enzymes: alanyl aminopeptidase (AAP), leucyl aminopeptidase (LAP), acid phosphatase (AcP) and β-N-acetylglucosaminidase (NAG). Rainbow trout were divided into experimental groups: unvaccinated control, vaccinated uninfected, unvaccinated infected and vaccinated infected. The fish were orally immunised with a Y. ruckeri vaccine and challenged with a virulent strain of Y. ruckeri. The results showed significant differences in lysosomal enzyme activity between groups, indicating that vaccination modulated the hepatic autophagic response during bacterial infection. AAP and LAP activity peaked in unvaccinated infected fish, whereas vaccinated fish exhibited a blunted enzymatic response, suggesting that vaccination attenuated excessive autophagic activation. Similarly, AcP and NAG activity patterns indicated an infection-induced autophagic response that was partially attenuated in vaccinated fish. These results suggest that vaccination influences autophagy-related enzymatic activity in the liver of rainbow trout, potentially enhancing pathogen clearance while preventing excessive cellular stress. Understanding the interplay between vaccination, infection and autophagy may provide valuable insights to optimise vaccination strategies and improve disease management in aquaculture.

 

References

Aluru, N., & Vijayan, M. M. (2009). Stress transcriptomics in fish: a role for genomic cortisol signaling. General and comparative endocrinology, 164(2-3), 142–150. https://doi.org/10.1016/j.ygcen.2009.03.020.

Barrett, A.J., & Heath, M.F. Lysosomal enzymes. In: Lysosomes, a Laboratory Handbook (ed. Dingle, J. T.), North Holland, 1977, pp. 19–146.

Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

Chiang, Y. R., Wang, L. C., Lin, H. T., & Lin, J. H. (2022). Bioactivity of orange-spotted grouper (Epinephelus coioides) cathepsin L: Proteolysis of bacteria and regulation of the innate immune response. Fish & shellfish immunology, 122, 399–408. https://doi.org/10.1016/j.fsi.2022.02.003.

Chun, Y., & Kim, J. (2018). Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life. Cells, 7(12), 278. https://doi.org/10.3390/cells7120278.

DeMartino, G. N., & Goldberg, A. L. (1978). Thyroid hormones control lysosomal enzyme activities in liver and skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 75(3), 1369–1373. https://doi.org/10.1073/pnas.75.3.1369.

Deretic V. (2021). Autophagy in inflammation, infection, and immunometabolism. Immunity, 54(3), 437–453. https://doi.org/10.1016/j.immuni.2021.01.018.

Desai, M., Fang, R., & Sun, J. (2015). The role of autophagy in microbial infection and immunity. ImmunoTargets and therapy, 4, 13–26. https://doi.org/10.2147/ITT.S76720.

Du, Y., Hu, X., Miao, L., & Chen, J. (2022). Current status and development prospects of aquatic vaccines. Frontiers in immunology, 13, 1040336. https://doi.org/10.3389/fimmu.2022.1040336.

Gan, T., Qu, S., Zhang, H., & Zhou, X. J. (2023). Modulation of the immunity and inflammation by autophagy. MedComm, 4(4), e311. https://doi.org/10.1002/mco2.311.

Gómez-Virgilio, L., Silva-Lucero, M. D., Flores-Morelos, D. S., Gallardo-Nieto, J., Lopez-Toledo, G., Abarca-Fernandez, A. M., Zacapala-Gómez, A. E., Luna-Muñoz, J., Montiel-Sosa, F., Soto-Rojas, L. O., Pacheco-Herrero, M., & Cardenas-Aguayo, M. D. (2022). Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells, 11(15), 2262. https://doi.org/10.3390/cells11152262.

Jang, Y. J., Kim, J. H., & Byun, S. (2019). Modulation of Autophagy for Controlling Immunity. Cells, 8(2), 138. https://doi.org/10.3390/cells8020138.

Johnstone, C., & Chaves-Pozo, E. (2022). Antigen Presentation and Autophagy in Teleost Adaptive Immunity. International journal of molecular sciences, 23(9), 4899. https://doi.org/10.3390/ijms23094899.

Ke P. Y. (2019). Diverse Functions of Autophagy in Liver Physiology and Liver Diseases. International journal of molecular sciences, 20(2), 300. https://doi.org/10.3390/ijms20020300.

Kroemer, G., Mariño, G., & Levine, B. (2010). Autophagy and the integrated stress response. Molecular cell, 40(2), 280–293. https://doi.org/10.1016/j.molcel.2010.09.023.

Kumar, G., Menanteau-Ledouble, S., Saleh, M., & El-Matbouli, M. (2015). Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Veterinary research, 46(1), 103. https://doi.org/10.1186/s13567-015-0238-4.

Kurhaluk, N., & Tkachenko, H. (2021). Antioxidants, lysosomes and elements status during the life cycle of sea trout Salmo trutta m. trutta L. Scientific reports, 11(1), 5545. https://doi.org/10.1038/s41598-021-85127-3.

Kurhaluk, N., Grudniewska, J., Pękala-Safińska, A., Pajdak-Czaus, J., Terech-Majewska, E., Platt-Samoraj, A., & Tkaczenko, H. (2024). Biomarkers of oxidative stress, biochemical changes, and the activity of lysosomal enzymes in the livers of rainbow trout (Oncorhynchus mykiss Walbaum) vaccinated against yersiniosis before a Yersinia ruckeri challenge. Journal of veterinary research, 68(3), 325–336. https://doi.org/10.2478/jvetres-2024-0050.

Menanteau-Ledouble, S., Nöbauer, K., Razzazi-Fazeli, E., & El-Matbouli, M. (2020). Effects of Yersinia ruckeri invasion on the proteome of the Chinook salmon cell line CHSE-214. Scientific reports, 10(1), 11840. https://doi.org/10.1038/s41598-020-68903-5.

Mokhtar, D. M., Zaccone, G., Alesci, A., Kuciel, M., Hussein, M. T., & Sayed, R. K. A. (2023). Main Components of Fish Immunity: An Overview of the Fish Immune System. Fishes, 8(2), 93. https://doi.org/10.3390/fishes8020093.

Mussap, M., Puddu, M., & Fanos, V. (2024). Metabolic Reprogramming of Immune Cells Following Vaccination: From Metabolites to Personalized Vaccinology. Current medicinal chemistry, 31(9), 1046–1068. https://doi.org/10.2174/0929867330666230509110108.

Osterloh, A. (2022). Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines, 10(5), 751. https://doi.org/10.3390/vaccines10050751.

Pérez-Stuardo, D., Espinoza, A., Tapia, S., Morales-Reyes, J., Barrientos, C., Vallejos-Vidal, E., Sandino, A. M., Spencer, E., Toro-Ascuy, D., Rivas-Pardo, J. A., Reyes-López, F. E., & Reyes-Cerpa, S. (2020). Non-Specific Antibodies Induce Lysosomal Activation in Atlantic Salmon Macrophages Infected by Piscirickettsia salmonis. Frontiers in immunology, 11, 544718. https://doi.org/10.3389/fimmu.2020.544718.

Rahman, M. A., Sarker, A., Ayaz, M., Shatabdy, A. R., Haque, N., Jalouli, M., Rahman, M. H., Mou, T. J., Dey, S. K., Hoque Apu, E., Zafar, M. S., & Parvez, M. A. K. (2024). An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines, 12(8), 1757. https://doi.org/10.3390/biomedicines12081757.

Tarasenko, T. N., & McGuire, P. J. (2017). The liver is a metabolic and immunologic organ: A reconsideration of metabolic decompensation due to infection in inborn errors of metabolism (IEM). Molecular genetics and metabolism, 121(4), 283–288. https://doi.org/10.1016/j.ymgme.2017.06.010.

Tkaczenko, H., Grudniewska, J., Pękala-Safińska, A., Terech-Majewska, E., & Kurhaluk, N. (2023). Time-dependent changes in oxidative stress biomarkers and activities of lysosomal and antioxidant enzymes in hepatic tissue of rainbow trout (Oncorhynchus mykiss Walbaum) following vaccination against Yersinia ruckeri. Fisheries & Aquatic Life, 31, 133-146. https://doi.org/10.2478/aopf-2023-0014.

van der Vaart, M., Spaink, H. P., & Meijer, A. H. (2012). Pathogen recognition and activation of the innate immune response in zebrafish. Advances in hematology, 2012, 159807. https://doi.org/10.1155/2012/159807.

Villumsen, K. R., Neumann, L., Ohtani, M., Strøm, H. K., & Raida, M. K. (2014). Oral and anal vaccination confers full protection against enteric redmouth disease (ERM) in rainbow trout. PloS one, 9(4), e93845. https://doi.org/10.1371/journal.pone.0093845.

Wangkahart, E., Secombes, C. J., & Wang, T. (2019). Dissecting the immune pathways stimulated following injection vaccination of rainbow trout (Oncorhynchus mykiss) against enteric redmouth disease (ERM). Fish & shellfish immunology, 85, 18–30. https://doi.org/10.1016/j.fsi.2017.07.056.

Wrobel, A., Leo, J. C., & Linke, D. (2019). Overcoming Fish Defences: The Virulence Factors of Yersinia ruckeri. Genes, 10(9), 700. https://doi.org/10.3390/genes10090700.

Zhou, Z., He, Y., Wang, S., Wang, Y., Shan, P., Li, P. (2022). Autophagy regulation in teleost fish: A double-edged sword. Aquaculture, 558, 738369. https://doi.org/10.1016/j.aquaculture.2022.738369.

Zwack, E. E., Snyder, A. G., Wynosky-Dolfi, M. A., Ruthel, G., Philip, N. H., Marketon, M. M., Francis, M. S., Bliska, J. B., & Brodsky, I. E. (2015). Inflammasome activation in response to the Yersinia type III secretion system requires hyperinjection of translocon proteins YopB and YopD. mBio, 6(1), e02095-14. https://doi.org/10.1128/mBio.02095-14.