Associative relationships of kappa-casein, beta-lactoglobulin, leptin and soma-totropin genotypes with dairy productivity in simmental breed

DOI: 10.32900/2312-8402-2020-123-58-67

Boyko Yelena,
Ph.D., Senior Researcher,
https://orcid.org/0000-0003-3065-0461,
Rossokha Vladimir,
Ph.D., Senior Researcher,
https://orcid.org/0000-0002-0978-9349,
Drobyazko Oksana,
https://orcid.org/0000-0001-5357-9464,
Oliinychenko Yelyzaveta,
Ph.D.,
https://orcid.org/0000-0002-1000-0683,
Zaderikhina Elena,
https://orcid.org/0000-0002-8907-4908,
Institute of Animal Science NAAS of Ukraine

Keywords: cattle, GH growth hormone gene, LEP leptin gene, βLG beta-lactoglobulin gene, κ-Cn kappa-casein gene, combination, milk productivity


Abstract

In order to determine the productivity of Simmental cattle population, genotyping of animals by genes associated with economically useful traits was carried out. The application of results in planning long-term selection and breeding work, considering genotypes of breeding bulls was proposed.
Polymorphism of kappa-casein (κ-Cn), beta-lactoglobulin (βLG), leptin (LEP) and somatotropin (GH) genes in Simmental cattle population (The breeding facility “Krasniy Velikan”) was performed using of PCR-RFLP method. The level of productivity on milk yield, fat and protein content in milk was established. The combination of genotypes in the Simmental cattle population was determined on the basis of marking hereditary information by genes of quantitative traits to increase the productive potential of animals. In the studied population of Simmental breed polymorphisms were found to be polymorphic in all studied genes. The connection of controlled genes with indicators of animal milk productivity is established. Genotypes BB (κ-Cn), AA (βLG), BA (GH) and AB (LEP) were characterized by the highest rates of milk yield during the first lactation, genotypes AB (κ-Cn), AA (βLG), BA (GH) and AA (LEP) – the highest fat content in milk, genotypes AA (κ-Cn), BB (βLG), BA (GH) – the highest protein content in milk.
The analysis of associative connections of the main productive traits of Simmental cattle with polymorphism of genes of kappa-casein, growth hormone, leptin and beta-lactoglobulin makes it possible to establish the most desirable complex genotypes: κ- to increase the fat content of milk, κ-CnAAGHBALEPAA / ABΒlgBA in selection to increase the protein content in milk.
It is shown that in order to increase the productivity of Simmental cattle populations it is necessary to genotype breeding animals by genes associated with economically useful traits and apply the results when planning long-term plans for breeding work considering the genotypes of breeding bulls.

References

  1. Amiri, S., Jemmali, B., Ferchichi, M. A., Jeljeli, H., Boulbaba, R., & Gara,A. B. (2018). Assessment of growth hormone gene polymorphism effects on reproductive traits in Holstein dairy cattle in Tunisia. Journal of Animal Breeding, 61, 481–489.
  2. Egbert, F. K., Bjarne, N., & Pieter, W. K. (2016). Genomic selection in commercial pig breeding. Animal Frontiers, 6, 15–22.
  3. Dekkers, C. M. (2004). Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science, 82 (13), 313–
  4. Fedota, O. M., Lysenkoa N. G., Rubanb S. Yu., Kolisnykc O. I., & Goraychukd I. V. (2017). The Effects of Polymorphisms in Growth Hormone and Growth Hormone Receptor Genes on Production and Reproduction Traits in Aberdeen-Angus Cattle (Bos taurus L., 1758). Cytology and Genetics, 51(5), 352–360.
  5. Gurses, , Yuce, H., Etem, E. O., & Patir, B. (2016). Polymorphisms of kappa-casein gene and their effects on milk production traits in Holstein, Jersey and Brown Swiss cattle. Animal Production Science, 58(5), 778–784.
  6. Hernandez, N., Martínez-Gonzalez, J. , Parra-Bracamonte, G. M., Sifuentes-Rincon, A. M., Lopez-Villalobos, N., & Morris, S. T. (2016). Association of polymorphisms in growth hormone and leptin candidate genes with live weight traits of Brahman cattle. Genetics and Molecular Research, 3, 230–234.
  7. Jecminkova, K., Muller, U., Kyselova, J., Sztankoova, Z., Zavadilova, L., Stipkova, M., & Majzlik, I. (2018). Association of leptin, toll-like receptor 4, and chemokine receptor of interleukin 8 C-X-C motif single nucleotide polymorphisms with fertility traits in Czech Fleckvieh cattle Asian-Australas. Journal of Animal Science, 31, 1721–1728.
  8. Kopylov, K. V. Kopylova, K. V., Shelov, A. V., & Berezovsky, O. V. (2014). Use of the Molecular-Genetic Markers in the Selection Process of the Ukrainian Animal Husbandry. Agricultural Science and Practice, 1(2), 24–32.
  9. Maletic, M., Aleksic, N., Vejnovic, B., Niksic, D., Kulic, M., Dukic, B., & Cirkovic, D. (2016). Polymorphism of κ-casein and β-lactoglobulin genes in Busha and Holstein Friesian dairy cows in Serbia. Mljekarstvo, 66(3), 198–205.
  10. Miluchova, Gabor, M., Candrak, J., Trakovicka, A., & Candrakova, K. (2018). Association of HindIII-polymorphism in kappa-casein gene with milk, fat and protein yield in holstein cattle. Biochimica Polonica, 65(3), 403–407.
  11. Volkandari, S. D., Indriawati, E., & Margawati, T. (2017). Genetic polymorphism of kappa-casein gene in Friesian Holstein: a basic selection of dairy cattle superiority. Jornal of Indonesian Trop, 42(4), 213–
  12. Vinnychuk, D. T. (2011). Selekciya koriv za lokusamy QTL (teoretychnyj aspekt) [Cow breeding by QTL loqueses]. Visnyk ahrarnoi naukyBulletin of Agrarian science, 4, 48–49 [In Ukrainian].
  13. Epishko, T. Y. & Kurak, O. P. (2008). Polymorfyzm gena kappa-kazey na razly chnix populyacyj krupnogo rogatogo skota cherno-pestroj porodi [Kappa-casein gene polymorphisms of various populations of Black-Motley cattle]. Vesci nacyjanal”naj akadjemii navuk BelarusiTo conduct the National Academy of Sciences of Belarus, 3, 71–75 [In Russian].
  14. Kopylov, K. Metlyczka, O. I., & Moxnachova, N. B. (2016). Molekulyarno-genety chnyj monitoryng u systemi zberezhennya genetychnyx resursiv tvaryn [Molecular-genetic monitoring of genetic potential ]. Visnik agrarnoi nauki Bulletin of Agrarian science, 6, 43–47 [In Ukrainian].
  15. Kopylov, K. V. & Biryukova, O. D. (2010). Harakterystyka tvaryn ukrayinskoyi chorno-ryaboyi molochnoyi porodyza polimorfizmom geniv (QTL) [Characteristics of animals of the Ukrainian Black-and-White dairy breed by gene polymorphism (QTL)]. Naukovyi visnyk Livivskoho natsionalnoho universytetu veterynarnoi medytsyny i biotekhnolohii im. S. Z. Hzhytskoho – Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology. SZ Gzhytsky. Lviv, 2(44), 98–102 [In Ukrainian].
  16. Kopylova, K. V., Kopylov, K. V., & Tarasyuk, S. I. (2006). Polimorfizm geniv, asocijovanyx z gospodarsko korysnymy oznakamy u velykoyi rogatoyi xudoby [Polymorphism of genes associated with economically useful traits in cattle]. Visnyk ahrarnoi naukyBulletin of Agrarian science, 9, 52–58 [In Ukrainian].
  17. Rossoxa, V. Y., Shkavro, N. N., & Drobyazko, O. V. (2014). Polymorfyzm genov gormona rosta y kappa-kazeyna krupnogo rogatogo skota porodi sharole [Growth hormone and kappa casein gene polymorphisms in Charolais cattle]. Zootexnycheskaya nauka Belarusii Zootechnical science of Belorussia. Zhodino, 49, 146–153 [In Russian].
  18. Shkavro, N. M. (2013). Asotsiatyvni zviazky osnovnykh produktyvnykh oznak symentalskoi khudoby z polimorfizmom heniv kapa-kazeinu ta hormonu rostu [Associations of the main productive traits of Simmental cattle with polymorphisms of kappa-casein and growth hormone genes]. Naukovyi visnyk Luhanskoho natsionalnoho ahrarnoho universytetu nauky Scientifical bulletin of Lugansk national agrarian university. Lugansk, 54, 153–157 [In Ukrainian].