ASSESSMENT OF GENETIC DIVERSITY IN THE POPULATION OF CHAROLAIS CATTLE OF UKRAINIAN SELECTION USING MICROSATELLITE MARKERS

DOI: 10.32900/2312-8402-2025-133-60-68

Yuriy LYASHENKO,
Candidate of Agricultural Sciences,
Senior Researcher,
https://orcid.org/0000-0003-2747-476X,
Volodymyr MARCHUK,
post-graduate student,
Livestock Farming Institute of NAAS of Ukraine, Kharkiv, Ukraine

Keywords: microsatellites, polymorphism, population, Charolais, allele, genotype, heterozygosity


The article presents the results of a study of the genetic-population structure in a herd of beef-type Charolais breed cows of Ukrainian selection (SEEF “Hontarivka”, Kharkiv region). Genetic variation analysis in the experimental group of animals was performed using 10 microsatellite loci recommended by FAO-ISAG: ETH225, BM2113, ETH3, BM1818, BM1824, ILSTS006, INRA023, TAGLA053, TAGLA122, ETH10. The amplification products were separated in native polyacrylamide gels. All the loci studied were polymorphic. The number of detected alleles per locus ranged from 2 (ETH10) to 10 (TGLA053) (an average of 5 alleles per locus), the size of which ranged from 117 bp (ETH3) to 307 bp (ILSTS006). The vast majority of the studied loci belong to informative and valuable markers (PIC > 0.5). The most polymorphic loci were TGLA053 (PIC =0.81) and INRA023 (PIC =0.72). The main population and genetic parameters for the studied loci are calculated. The highest values of heterozygosity (He) and effective allele count (ne) were inherent in the loci TGLA053 (He =0.82, ne =5.7) and INRA023 (He =0.73, ne =3.8). The minimum values of observed heterozygosity are set for loci ETH10 (Ho =0.21) and TGLA122 (Ho =0.44).

Most microsatellite loci are characterized by an equilibrium state between actual and expected genotype frequency indicators, and a likely deviation in the form of heterozygote deficiency was established only for the TGLA122 locus (Fis = 0.29; p < 0.05).

Changes in the genetic structure of the experimental population of Charolais cattle in comparison with data from previous years and populations from other regions of the world are analyzed. These results indicate a significant narrowing of genetic variability in the domestic Charolais population. This can have further negative consequences and requires replenishment of allelic diversity and control of genetic processes in breeding work using DNA markers.

 

References

Debrauwere, H., Gendrel, C., Lechat, S. Dutreix, M. (1997). Differences and similarities various tandem repeat sequences: minisatellites and microsatellites, Biochimie, Vol, 79, P, 577–586. https://doi.org/10.1016/S0300-9084(97)82006-8.

Dzitsiuk, V., Guzevatiy, O., Lytvynenko, T., & Guzeev, Y. (2020). Genetic polymorphism of buffalo Bubalus bubalis bubalis by cytogenetic and molecular markers. Agricultural Science and Practice, 7(1), 24-31. https://doi.org/10.15407/agrisp7.01.024.

FAO. (2011). Molecular genetic characterization of animal genetic resources. FAO animal production and health guidelines, No, 9, Rome, Italy, URL: http://www.fao.org/docrep/014/i2413e/i2413e00.pdf.

FAO/ISAG. (2004). Secondary Guidelines. Measurement of Domestic Animal Diversity (MoDAD): New recommended microsatellite markers.  URL: http://dad.fao.org/en/refer/library/guidelin/marker.pdf.

Koskinen, M.T. (2006). Development of STR assays for identification and forensic testing. In: Proceedings of the 30th International Conference on Animal Genetics, 2006, Porto Seguro, Brazil. Belo Horizonte, Brazil: CBRA, 2006. W582: 21. https://www.isag.us/Docs/2006ISAG_Proceedings.pdf.

Kramarenko, A. (2019). Genetic structure of the Southern meat cattle breed based on microsatellite markers. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 21(91), 21-28. https://doi.org/10.32718/nvlvet-a9104.

Kramarenko, A. S., Gladyr, E. A., Kramarenko, S. S., Pidpala, T.V., Strikha, L.A., Zinovieva, N. A. (2018). Genetic diversity and bottleneck analysis of the Red Steppe cattle based on microsatellite markers. Ukrainian Journal of Ecology, Vol, 8 (2), P. 12–17. https://www.researchgate.net/publication/324068904

Kulibaba, R. A., Liashenko, Y. V. (2016). Influence of the PCR artifacts on the genotyping efficiency by the microsatellite loci using native polyacrylamide gel electrophoresis. Cytology and Genetics, Vol, 50, № 3, P, 162–167. DOI: 10.3103/S0095452716030087.

Ladyka, V.І., Khmelnychyi, L.M., Lyashenko, Y.V., Kulibaba, R.O. (2019). Analysis of the genetic structure of a population of Lebedyn cattle by microsatellite markers, Regulatory Mechanisms in Biosystems, Vol, 10 (1), P, 45–49, DOI:10,15421/021907

Liashenko, Y. V., Kulibaba, R. A., Marchuk, V. S, Kulibaba, S. V. (2024). The Scientific and Technical Bulletin of the Institute of Animal Science NAAS of Ukraine. №132. 87-99. DOI 10.32900/2312-8402-2024-132-87-99.

Mishra, S. P., Mishra, C., Mishra, D. P., Rosalin, B. P., Bhuyan, C. (2017). Application of advanced molecular marker technique for improvement of animal: A critical review, Journal of Entomology and Zoology Studies, Vol, 5 (5), P, 1283–1295. https://www.researchgate.net/publication/320298591.

Peakall, R., Smouse, P.E. (2012). GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 28 (19): 2537– 2539.  doi: 10.1093/bioinformatics/bts460.

Petrenko, S.M., Nosevych, D.K., Tokar, Yu.I., Uhnivenko, A.M. (2016). Naukovi osnovy rozvytku miasnoho skotarstva v Ukraini. K.: KOMPRYNT,330 c. (in Ukrainian) https://nubip.edu.ua/sites/default/files/u249/naukovi_osnovi_rozvitku_myasnogo_skotarstva_v_ukrayini.pdf.

Putnova, L., Vrtkova, I., Srubarova, P., & Stehlik, L. (2011). Utilization of a 17 microsatellites set for bovine traceability in Czech cattle populations. Iranian Journal of Applied Animal Science, 1(1), 31–37. https://sanad.iau.ir/fa/Journal/ijas/DownloadFile/1023224.

Al-Jubori, S.M. & Senkal, R.H. (2023). Genetic Diversity And Productive Performance In Local And Imported Iraqi Cows Using Microsatellite Markers. The Iraqi Journal Of Agricultural Sciences, 54(6):1538-1547. Doi:10.36103/Ijas.V54i6.1854.

Senan, S., Kizhakayil, D., Sasikumar, B., Sheeja, T. (2014). Methods for development of microsatellite markers: an overview. NotSciBiol, Vol, 6 (1) P, 1–13. DOI: https://doi.org/10.15835/nsb619199.

Shel’ov, A. V. (2015). Polimorfizm mikrosatelitnykh lokusiv DNK u riznykh vydiv  sil’s’kohospodars’kykh  tvaryn  [Polymorphism  of  microsatellite  DNA  loci in different species of farm animals]. Animal Breeding and Genetics, 50, 183–190 (in Ukrainian).  http://nbuv.gov.ua/UJRN/rgt_2015_50_28

Shel’ov, A. V., Kopylov, K. V., Kramarenko, S. S., & Kramarenko, O. S. (2017). Analysis of population-genetic processes in different cattle breeds by microsatellite loci of DNA. Agricultural Science and Practice, 4(1), 74–78. DOI: https://doi.org/10.15407/agrisp4.01.074

Shkavro, N. M., Radko, A., Slota, E., & Rossokha, V. I. (2010). Polimorfizm mikrosatelitnykh markeriv DNK dvokh porid velykoyi rohatoyi khudoby  [Polymorphism of microsatellite DNA markers two breeds of cattle]. Visnyk Kharkivs’koho Natsional’noho Universytetu imeni V.  N.  Karazina. Seriya Biolohiya, 905(11), 120–126 http://nbuv.gov.ua/UJRN/VKhb_2010_905_11_19. (in Ukrainian).

Shkavro, N., Blyzniuk, O., Pomitun, I., & Babicz, M. (2018). Evaluation of the genetic structure and main productive traits of Lebedyn cattle based on genetic markers  polymorphism. Journal of Animal Science Biology and Bioeconomy, 36(2), 17–26. DOI: 10.24326/jasbbx.2018.2.2.

Sifuentes-Rincón, A.M., Puentes-Montiel, H., & ParraBracamonte, G.M. (2007). Assessment of genetic structure in Mexican Charolais herds using microsatellite markers. Electronic Journal of Biotechnology, 10(4), 492–499. doi: 10.4067/S0717- 34582007000400002.

Snegin, E. A., Kramarenko, A. S., Snegina, E. A., & Kramarenko, S. S. (2019). Evaluation of genetic diversity and relationships among eight Russian and Ukrainian cattle breeds based on microsatellite markers. Regulatory Mechanisms in Biosystems, 10(4), 388-393. https://doi.org/10.15421/021958.

Zhao, J., Zhu, C., Xu, Z., Jiang, X., Yang, S., & Chen, A. (2017). Microsatellite markers for animal identification and meat traceability of six beef cattle breeds in the Chinese market. Food Control, 78, 469–475. doi:10.1016/j.foodcont.2017.03.017.