DOI: 10.32900/2312-8402-2024-132-87-99
Keywords: microsatellites, polymorphism, population, cattle, allele, genotype, heterozygosity
The article presents the results of a study of the genetic and population structure in herds of Ukrainian Black-and-White and Red-and-White dairy breeds kept in the Kharkiv region (DPDH “Hontarivka”). The analysis of genetic variability in the experimental groups of animals was carried out using 10 microsatellite loci recommended by FAO-ISAG: ETH225, BM2113, ETH3, BM1818, BM1824, ILSTS006, INRA023, TAGLA053, TAGLA12, ETH10. The amplification products were separated in native polyacrylamide gels of different concentrations (5 – 8 %). All studied loci were found to be polymorphic. The number of detected alleles per locus ranged from 4 to 8 (on average 5 alleles per locus) the size of which ranged from 115 bp (ETH3) to 307 bp (ILSTS006). The vast majority of studied loci belong to informatively valuable markers (PIC > 0.5). The most polymorphic loci for both breeds were TGLA053 (8 alleles), BM2113 (6) and ETH3(6). The main population genetic parameters were calculated for the studied loci. The highest values of heterozygosity indices (He) and effective number of alleles (ne) were characteristic of the BM2113 locus (He=0.80-0.81, ne=5.1-5.3). The minimum values of expected heterozygosity were established for the ETH3 loci (0.53-0.55; Ukrainian Black-and-White and Red-and-White dairy breeds) and BM1818 (0.59, Ukrainian Black-and-White dairy breed).
For most microsatellite loci, an equilibrium state between the actual and expected genotype frequencies is characteristic. A probable deviation in the form of a deficit of heterozygotes was established only for the BM1818 locus in both experimental populations (Fis = 0.37; p < 0.05).
Changes in the genetic structure of the experimental cattle population (Kharkiv region) were analyzed in comparison with data from previous years of research, other regions, and with data from the initial forms involved in the creation of these breeds. Analysis of genetic changes that occurred during the reproduction of experimental cattle populations indicates a narrowing of genetic variability and the need to control genetic processes in breeding work.
Referenses
Al-Jubori S.M. & Senkal R.H. (2023). Genetic diversity and productive performance in local and imported iraqi cows using microsatellite markers. The Iraqi Journal of Agricultural Sciences 54(6):1538-1547. Doi:10.36103/Ijas.V54i6.1854.
Debrauwere, H., Gendrel, C., Lechat, S. Dutreix, M. (1997). Differences and similarities various tandem repeat sequences: minisatellites and microsatellites, Biochimie, Vol, 79, P, 577–586. https://doi.org/10.1016/S0300-9084(97)82006-8.
Dzitsiuk, V., Guzevatiy, O., Lytvynenko, T., & Guzeev, Y. (2020). Genetic polymorphism of buffalo Bubalus bubalis bubalis by cytogenetic and molecular markers. Agricultural Science and Practice, 7(1), 24-31. https://doi.org/10.15407/agrisp7.01.024.
FAO. (2011). Molecular genetic characterization of animal genetic resources. FAO animal production and health guidelines, No, 9, Rome, Italy, URL: http://www.fao.org/docrep/014/i2413e/i2413e00.pdf.
FAO/ISAG. (2004). Secondary Guidelines. Measurement of Domestic Animal Diversity (MoDAD): New recommended microsatellite markers. URL: http://dad.fao.org/en/refer/library/guidelin/marker.pdf.
Frankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56–63. doi:10.1016/j.biocon.2013.12.036.
Gladiy, M. V., Ruban, S. Y., Getya, A. A., & Pryima, S. V. (2015). Porody sil’s’kohospodars’kykh tvaryn Ukrayiny. Istoriya, stan, perspektyvy rozvytku [Breeds of farm animals in Ukraine. History, state, development prospects]. Animal Breeding and Genetics, 49, 44–57 (in Ukrainian). http://nbuv.gov.ua/UJRN/rgt_2015_49_10.
Kramarenko, A. (2019). Genetic structure of the Southern meat cattle breed based on microsatellite markers. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 21(91), 21-28. https://doi.org/10.32718/nvlvet-a9104.
Kramarenko, A. S., Gladyr, E. A., Kramarenko, S. S., Pidpala, T.V., Strikha, L.A., Zinovieva, N. A. (2018). Genetic diversity and bottleneck analysis of the red steppe cattle based on microsatellite markers. Ukrainian journal of ecology, Vol, 8 (2), p. 12–17. https://www.researchgate.net/publication/324068904
Kulibaba, R. A., Liashenko, Y. V. (2016). Influenceof the PCR artifacts on the genotyping efficiency by the microsatellite loci using native polyacrylamide gel electrophoresis. Cytology and Genetics, Vol, 50, № 3, P, 162–167. DOI: 10.3103/S0095452716030087
Ladyka, V.І., Khmelnychyi, L.M., Lyashenko, Y.V., Kulibaba, R.O. (2019). Analysis of the genetic structure of a population of Lebedyn cattle by microsatellite markers, Regulatory Mechanisms in Biosystems, Vol, 10 (1), P, 45–49, DOI:10,15421/021907
Mishra, S. P., Mishra, C., Mishra, D. P., Rosalin, B. P., Bhuyan, C. (2017). Application of advanced molecular marker technique for improvement of animal: A critical review, Journal of Entomology and Zoology Studies, Vol, 5 (5), P, 1283–1295. https://www.researchgate.net/publication/320298591.
Peakall, R., Smouse, P.E. (2012). GenAIEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 28 (19): 2537– 2539. doi: 10.1093/bioinformatics/bts460.
Podoba, B.Ye., Kopylov, K.V., Kovtun, S. I., Kopylova, K.V., Podoba, M.L., Dobryanska, M.L. (2013). Molekulyarno-henetychni ta biotekhnolohichni doslidzhennya v haluzi / za nauk. red. akad. M.V. Zubtsya. [Molecular genetic and biotechnological research in the field of animal husbandry]- K.: Ahrar. nauka, 2013. – 248 s. (in Ukrainian). http://www.utgis.org.ua/images/pdf/books/podoba_2013.pdf.
Senan, S., Kizhakayil, D., Sasikumar, B., Sheeja, T. (2014). Methods for development of microsatellite markers: an overview. NotSciBiol, Vol, 6 (1) P, 1–13. DOI: https://doi.org/10.15835/nsb619199.
Shel’ov, A. V. (2015). Polimorfizm mikrosatelitnykh lokusiv DNK u riznykh vydiv sil’s’kohospodars’kykh tvaryn [Polymorphism of microsatellite DNA loci in different species of farm animals]. Animal Breeding and Genetics, 50, 183–190 (in Ukrainian). http://nbuv.gov.ua/UJRN/rgt_2015_50_28
Shel’ov, A. V., Kopylov, K. V., Kramarenko, S. S., & Kramarenko, O. S. (2017). Analysis of population-genetic processes in different cattle breeds by microsatellite loci of DNA. Agricultural Science and Practice, 4(1), 74–78. DOI: https://doi.org/10.15407/agrisp4.01.074
Shkavro, N. M., Radko, A., Slota, E., & Rossokha, V. I. (2010). Polimorfizm mikrosatelitnykh markeriv DNK dvokh porid velykoyi rohatoyi khudoby [Polymorphism of microsatellite DNA markers two breeds of cattle]. Visnyk Kharkivs’koho Natsional’noho Universytetu imeni V. N. Karazina. Seriya Biolohiya, 905(11), 120–126 (in Ukrainian). http://nbuv.gov.ua/UJRN/VKhb_2010_905_11_19.
Shkavro, N., Blyzniuk, O., Pomitun, I., & Babicz, M. (2018). Evaluation of the genetic structure and main productive traits of Lebedyn cattle based on genetic markers polymorphism. Journal of Animal Science Biology and Bioeconomy, 36(2), 17–26. DOI: 10.24326/jasbbx.2018.2.2.
Snegin, E. A., Kramarenko, A. S., Snegina, E. A., & Kramarenko, S. S. (2019). Evaluation of genetic diversity and relationships among eight Russian and Ukrainian cattle breeds based on microsatellite markers . Regulatory Mechanisms in Biosystems, 10(4), 388-393. https://doi.org/10.15421/021958
Vyshnevskyi, L. V., Voitenko, S. L., & Sydorenko, O. V. (2019). Economically useful signs of dairy breeds cattle in herds of research farms of the network of the National academy of agricultural sciences of Ukraine. Animal breeding and genetics, 57, 29-37. Https://Doi.Org/10.31073/Abg.57.04
Zhao, J., Zhu, C., Xu, Z., Jiang, X., Yang, S., & Chen, A. (2017). Microsatellite markers for animal identification and meat traceability of six beef cattle breeds in the Chinese market. Food Control, 78, 469–475. doi:10.1016/j.foodcont.2017.03.017