DOI: 10.32900/2312-8402-2023-130-178-190
Keywords: livestock by-products, nutrient digestibility, greenhouse gases, separation efficiency, liquid, solid fractions
Climate change due to human activity in developed countries leads to numerous cases of deterioration of living conditions in all regions of the planet. However, it is possible to change this situation. To do this, it is necessary to maintain the global temperature at today’s level by reducing emissions of greenhouse gases into the atmosphere. Agriculture makes a significant contribution to anthropogenic global warming, particularly livestock. Animal manure and the soils cultivated with it are the most important sources of emissions from livestock after intestinal methane. Experts estimate that nitrous oxide and methane produced in pastures and manure processing systems can account for up to a quarter of on-farm emissions, so it is important to identify strategies to reduce the flow of these gases. To solve the problem of global warming, it is necessary to control a number of positions, one of which is the assessment of actual emissions of greenhouse gases and, in particular, in the production of livestock products.
The article presents a new approach to increasing the accuracy of greenhouse gas emissions calculations. To determine the gross energy in the methodology of effective practice, the values of the indicators of clean energy are used to maintain the needs of animals for the continuation of vital activities and taking into account their productivity. When expanding the approaches for obtaining raw data for determining greenhouse gas emissions from by-products of livestock farming to determine gross energy, use the indicators of the content of crude protein, crude fat, crude fiber, and non-nitrogenous extractives in the diet.
The yield of animal excrement is calculated based on the weight and composition of the feed, taking into account the digestibility of the organic matter of the feed and the relative content of organic matter.
When separating livestock by-products (organic waste) into solid and liquid fractions, the actual data characterizing the quality of separation on individual elements of the technological line are the mass and moisture content of effluents entering processing and obtained at the exit, the mass and moisture content of the liquid fraction, and the mass and moisture content of the solid fraction.
References
2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 10: Emissions from Livestock and Manure Management. URL: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf
Aguirre-Villegas, H. A., and Larson, R. A. (2017). Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J. Clean. Prod. 143, 169–179. https://doi.org/10.1016/j.jclepro.2016.12.133
Bica, R., Palarea-Albaladejo, J., Lima, J., Uhrin, D., Miller, G. A., Bowen, J. M., Pacheco, D., Macrae, A. & Dewhurst, R. J. (2022). Methane emissions and rumen metabolite concentrations in cattle fed two different silages. Sci Rep 12, 5441. https://doi.org/10.1038/s41598-022-09108-w
Cassia, R., Nocioni, M., Correa-Aragunde, N. and Lamattina, L. (2018) Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress. Front. Plant Sci. 9:273. https://doi.org/10.3389/fpls.2018.00273
Dangal, S. R. S., Tian, H., Xu, R., Chang, J., Canadell, J. G., Ciais, P., Pan, S., Yang, J., Zhang, B. (2019). Global nitrous oxide emissions from pasturelands and rangelands: magnitude, spatiotemporal patterns, and attribution. Glob. Biogeochem Cy. 33, 200–222. https://doi.org/10.1029/2018GB006091.
Das, N. G., Sarker, N. R., & Haque, M. N. (2020). An estimation of greenhouse gas emission from livestock in Bangladesh. Journal of advanced veterinary and animal research. 7(1), 133–140. https://doi.org/10.5455/javar.2020.g402
Furdychko, O.I., Zhukorskyi, O.M., Borodai, V.P., Pinchuk, V.O., Nikyforuk, O.V., Yatsuk, I.P., Nikityuk, Y.A., Kurnyk, I.M. (2016). Methodological recommendations for reducing ammonia emissions from agricultural sources. Kyiv. 31 р. http://agroeco.org.ua/images/Documents/Ammonia.pdf.
Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. (2013). Tackling Climate Change through Livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations. Available from: http://www.fao.org/3/i3437e/i3437e.pdf.
Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A., Williams, J., Sparks, T., West, F. (2023). State of the UK Climate 2022. International Journal of Climatology. Vol. 43, Issue S1. p. 1-83. https://doi.org/10.1002/joc.8167.
Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., et al. (2018). Global carbon budget 2017. Earth Syst. Sci. Data. 10, 405–448. https://doi.org/10.5194/essd-10-405-2018.
Li, Y., Achinas, S., Zhao, J., Geurkink, B., Krooneman, J., Euverink, G.J.W. (2020). Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renewable Energy, V 153, рр. 553-563. https://doi.org/10.1016/j.renene.2020.02.041.
Luo, J., de Klein, C. A. M., Ledgard, S. F., and Saggar, S. (2010). Management options to reduce nitrous oxide emissions from intensively grazed pastures: a review. Agric. Ecosyst. Environ. 136. 282–282. https://doi.org/10.1016/j.agee.2009.12.003.
MacLeod, M. J., Vellinga, T., Opio, C., Falcucci, A., Tempio, G., Henderson, B., Makkar, H., Mottet, A., Robinson, T., Steinfeld, H., & Gerber, P. J. (2018). Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM). Animal: an international journal of animal bioscience. 12(2), 383–397. https://doi.org/10.1017/S1751731117001847.
Mahmudul, H. M., Rasul, M. G., Akbar, D., Narayanan, R., & Mofijur, M. (2021). A comprehensive review of the recent development and challenges of a solar-assisted biodigester system. The Science of the total environment, 753, 141920. https://doi.org/10.1016/j.scitotenv.2020.141920
Martin, C., Morgavi, D.P., Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal. 4 (3). рр. 351-365. https://doi.org/10.1017/S1751731109990620.
Morgavi DP, Forano E, Martin C, Newbold CJ. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal. Volume 4, Issue 7, Pages 1024-1036. https://doi.org/10.1017/S1751731110000546.
Owens, J.L., Thomas, B.W., Stoeckli, J.L., Beauchemin, K. A., McAllister, T. A., Larney F. J. & Hao, X. (2020). Greenhouse gas and ammonia emissions from stored manure from beef cattle supplemented 3-nitrooxypropanol and monensin to reduce enteric methane emissions. Sci. Rep. 10, 19310. https://doi.org/10.1038/s41598-020-75236-w.
Paul, M. J., Coffey, R., Stamp, J. & Johnson, T. (2019). A review of water quality responses to air temperature and precipitation changes 1: flow, water temperature, saltwater intrusion. Journal of the American Water Resources Association. 55(4), 824–843. https://doi.org/10.1111/1752-1688.12710.
Pinchuk, V.О., Borodai, V.P. (2019). Ammonia and greenhouse gas emissions from animal by-products. Taurida Scientific Herald. Series: Rural Sciences. Volume 110 (2). 190-198. https://doi.org/10.32851/2226-0099.2019.110-2.26.
Piskun, V. (2007). Removal and treatment of wastewater in the industrial production of livestock products. Kharkov: New word. 292 p.
Shibata, M., & Terada, F. (2010). Factors affecting methane production and mitigation in ruminants. Animal science journal = Nihon chikusan Gakkaiho. 81(1), 2–10. https://doi.org/10.1111/j.1740-0929.2009.00687.x.
Tapio, I., Snelling, T.J., Strozzi, F., Wallace, R.J. (2017). The ruminal microbiome associated with methane emissions from ruminant livestock. J Anim. Sci. Biotechnol. https://doi.org/10.1186/s40104-017-0141-0.
Tomczyk, A.M., Bednorz, E., Szyga-Pluta, K. (2021). Changes in Air Temperature and Snow Cover in Winter in Poland. Atmosphere. 12(1):68. https://doi.org/10.3390/atmos12010068.
van Cleef, F.O.S., Dubeux, J.C.B., Ciriaco, F.M., Darren, D.H., Ruiz-Moreno, M., Jaramillo, D.M., Garcia, L., Santos, Erick R.S., DiLorenzo, N., Vendramini, J.M.B., Naumann, Harley D., Sollenberger, L.E. (2022). Inclusion of a tannin-rich legume in the diet of beef steers reduces greenhouse gas emissions from their excreta. Sci. Rep. 12, 14220. https://doi.org/10.1038/s41598-022-18523-y.
Vorobel, M. (2022). greenhouse gases emission from pig manure by the use of superphosphate and slaked lime in different doses. foothill and mountain agriculture and stockbreeding. volume (71)-1. 205-218. https://doi.org/10.32636/01308521.2022-(71)-1-13 т.
Vorobel’, M.I., Moroz, V.V., Kaplins’kyj, V.V. (2018). Efficiency of action of natural minerals at emission of greenhouse gases in substratum of dung. Bulletin of Agricultural Science. 10: 35-40. https://doi.org/10.31073/agrovisnyk201810-05.