Antimicrobial efficacy of ethanolic extracts derived from stalks and roots of chelidonium majus l. against different types of staphylococcus aureus and escherichia coli strains

DOI: 10.32900/2312-8402-2021-126-14-24

Stefanowski N.,
Kurhaluk N.,
Doctor of Biological Sciences,
https://orcid.org/0000-0002-4669-1092,
Tkachenko H.,
Doctor of Biological Sciences,
https://orcid.org/0000-0003-3951-9005,
Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland

Keywords: Chelidonium majus, extracts, antimicrobial activity, Staphylo-coccus aureus strains, Escherichia coli strains, disk diffusion method


Abstract

A convincing number of studies indicate that chelidonine and sanguinarine together with other secondary metabolites exhibit potent antibacterial, antifungal, and antiparasitic properties. This prompted us to examine the antimicrobial efficacy of greater celandine (Chelidonium majus L.), a representative of the Papaveraceae family collected from the northern part of Poland, against Staphylococcus aureus subsp. aureus Rosenbach (ATCC®29213™) and S. aureus NCTC 12493 as well as Escherichia coli (Migula) Castellani and Chalmers (ATCC®25922™) and Escherichia coli (Migula) Castellani and Chalmers (ATCC®35218™). Taking into account the above considerations and based on previous results obtained in our laboratory, in the present work we decided to evaluate the antimicrobial efficacy of ethanolic extracts derived from stems and roots of C. majus against different types of Staphylococcus aureus and Escherichia coli strains. Fresh collected stalks and roots were washed, weighed, crushed, and homogenized in 96 % ethanol (in proportion 1:19) at room temperature. The extracts were then filtered and investigated for their antimicrobial activity. Antimicrobial activity was determined using the agar disk diffusion assay. The antimicrobial activity of extracts derived from stems of C. majus was highest against Staphylococcus aureus subsp. aureus Rosenbach (ATCC®29213™) and S. aureus NCTC 12493 strains. Since the antimicrobial efficacy of medicinal plants varies according to the accumulation of secondary metabolites (i.e. alkaloids, flavonoids, tannins, etc.), it is not surprising that differences in this efficacy have been noted even using samples taken from the same plant but from different parts of the plant (stalks, roots). The antimicrobial activity of crude ethanolic extracts obtained from stems and roots of greater celandine can be attributed to specific compounds or a combination of compounds. The present study lays the foundation for future research to confirm the potential use of C. majus as a candidate for the treatment of infections caused by Staphylococcus aureus and Escherichia coli in human and veterinary medicine.

 References

  1. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4), 493–496.
  2. Clarke, S. C., Haigh, R. D., Freestone, P. E., & Williams, P. H. (2003). Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin. Microbiol. Rev., 16, 365–378.
  3. Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M., & Finlay, B. B. (2013). Recent advances in understanding enteric pathogenic Escherichia coliClin. Microbiol. Rev., 26, 822–880.
  4. Etcheverría, A. I., & Padola, N. L. (2013). Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence, 4, 366–372.
  5. Frömmel, U., Böhm, A., Nitschke, J., Weinreich, J., Groß, J., Rödiger, S., Wex, T., Ansorge, H., Zinke, O., Schröder, C., Roggenbuck, D., & Schierack, P. (2013). Adhesion patterns of commensal and pathogenic Escherichia coli from humans and wild animals on human and porcine epithelial cell lines. Gut Pathog., 5(1), 31.
  6. Jusko, M., Potempa, J., Kantyka, T., Bielecka, E., Miller, H. K., Kalinska, M., Dubin, G., Garred, P., Shaw, L. N., & Blom, A. M. (2014). Staphylococcal proteases aid in evasion of the human complement system. J. Innate Immun., 6, 31–46.
  7. Kho, W., Kim, M. K., Jung, M., Chong, J. P., Kim, Y. S., Park, K. H., & Chong, Y. (2020). Strain-specific anti-biofilm and antibiotic-potentiating activity of 3′,4′-difluoroquercetin. Sci. Rep., 10, 14162.
  8. Kokoška, L., Polesny, Z., Rada, V., Nepovim, A., & Vanek, T. (2002). Screening of some Siberian medicinal plants for antimicrobial activity. J. Ethnopharmacol., 82, 51–53.
  9. McAdow, M., DeDent, A. C., Emolo, C., Cheng, A. G., Kreiswirth, B. N., Missiakas, D. M., & Schneewind, O. (2012). Coagulases as determinants of protective immune responses against Staphylococcus aureusInfect. Immun., 80, 3389–3398.
  10. Powers, M. E., & Bubeck Wardenburg, J. (2014). Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog., 10, 72.
  11.  Stefanowski N., Tkachenko H., & Kurhaluk N. (2021). Antimicrobial activity of Chelidonium majus L. extracts against Klebsiella pneumoniae strain.  Materials of the IX International Scientific-Practical Internet-Conference «Modern achievements of pharmaceutical technology», Modern achievements of pharmaceutical technology: a collection of scientific works. Іs. 9. Kharkiv: NUPh publishing house, 189–192.
  12. Stefanowski, N., Tkachenko, H., & Kurhaluk, N. (2021). Antibacterial efficacy of ethanolic extracts derived from roots and stalks of Chelidonium majus L. (Papaveraceae). Medicinal Herbs: from Past Experience to New Technologies: Proceedings of Ninth International Scientific and Practical Conference. Poltava, 154–160.
  13. Stefanowski, N., Tkachenko, H., & Kurhaluk, N. (2021). Antibacterial properties of root and stalk extracts of Chelidonium majus L. (Papaveraceae) against Enterococcus faecalis strain. Climate Change & Sustainable Development: New Challenges of the Century: Monograph. Eds Mitryasova O., Koszelnik P.; Mykolaiv: Petro Mohyla Black Sea National University. Rzeszow: Rzeszow University of Technology, 2021. 414–430.
  14. Tome, F., & Colombo, M. L. (1995). Distribution of alkaloids in Chelidonium majus and factors affecting their accumulation. Phytochemistry, 40, 37–39.
  15. Vazquez, V., Liang, X., Horndahl, J. K., Ganesh, V. K., Smeds, E., Foster, T. J., & Hook, M. (2011). Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). J. Biol. Chem., 286, 29797–29805.
  16. Zielińska, S., Dziągwa-Becker, M., Junka, A., Piątczak, E., Jezierska-Domaradzka, A., Brożyna, M., Paleczny, J., Sobiecka, A., Słupski, W., Mess, E., Kucharski, M., Çiçek, S. S., Zidorn, C., & Matkowski, A. (2021). Screening Papaveraceae as Novel Antibiofilm Natural-Based Agents. Molecules, 26(16), 4778.
  17. Zielińska, S., Jezierska-Domaradzka, A., Wójciak-Kosior, M., Sowa, I., Junka, A., & Matkowski, A. M. (2018). Greater Celandine’s Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today’s Pharmacology. Front. Pharmacol., 9, 299.