DOI: 10.32900/2312-8402-2022-128-36-45
Keywords: cajeput essential oil, antibacterial properties, Gram-negative/positive bacterial strains, Kirby-Bauer disc diffusion method
Abstract
Essential oil and leaf extracts of Melaleuca leucadendra L. demonstrated a series of biological activities of interest, including antioxidant, antimicrobial, antitumoral and anti-inflammatory properties. The aim of the current study was an in vitro evaluation of the antimicrobial activity of the cajeput essential oil against Gram-negative strains such as Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922™), Escherichia coli (Migula) Castellani and Chalmers (ATCC® 35218™), Pseudomonas aeruginosa (Schroeter) Migula (ATCC® 27853™) and Gram-positive strains such as Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213™), Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™), methicillin-resistant (MRSA), mecA positive Staphylococcus aureus (NCTC® 12493), Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 51299™) (resistant to vancomycin; sensitive to teicoplanin) and Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 29212™) to assess the possible use of this oil in preventing infections caused by these pathogens. The cajeput essential oil was provided by Polish essential oil manufacturers (Bamer®, Włocławek, Poland). Antimicrobial susceptibility of the tested strains was performed by the Kirby-Bauer disc diffusion method. Our research has shown that cajeput essential oil exhibits antibacterial properties. Gram-positive bacteria were the most susceptible to commercial cajeput oil, which may indicate that the active biological substances in cajeput essential oil (including phenolic acids, tannins, etc.) may be potential agents against bacterial infections. Among Gram-negative bacteria, only Pseudomonas aeruginosa (Schroeter) Migula (ATCC® 27853™) strain was resistant to the cajeput essential oil. We did not observe statistically significant changes in the zone of growth inhibition after the application of cajeput essential oil compared to the control samples (96% ethanol). Our study may suggest that the use of cajeput essential oil may be helpful for a wide range of bacterial infections in veterinary, aquaculture, medicine, and beyond.
References
- Abu Bakar, A., Sulaiman, S., Omar, B., & Mat Ali, R. (2012). Evaluation of Melaleuca cajuputi (Family: Myrtaceae) Essential Oil in Aerosol Spray Cans against Dengue Vectors in Low Cost Housing Flats. Journal of Arthropod-Borne Diseases, 6(1), 28–35.
- Al-Abd, N. M., Mohamed Nor, Z., Mansor, M., Azhar, F., Hasan, M. S., & Kassim, M. (2015). Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. BMC Complementary and Alternative Medicine, 15, 385. https://doi.org/10.1186/s12906-015-0914-y.
- Álvarez-Martínez, F. J., Barrajón-Catalán, E., Encinar, J. A., Rodríguez-Díaz, J. C., & Micol, V. (2020). Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Current Medicinal Chemistry, 27(15), 2576–2606. https://doi.org/10.2174/0929867325666181008115650.
- Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.
- Bianchini Silva, L. S., Perasoli, F. B., Carvalho, K. V., Vieira, K. M., Paz Lopes, M. T., Bianco de Souza, G. H., Henrique Dos Santos, O. D., & Freitas, K. M. (2020). Melaleuca leucadendron (L.) L. flower extract exhibits antioxidant and photoprotective activities in human keratinocytes exposed to ultraviolet B radiation. Free Radical Biology & Medicine, 159, 54–65. https://doi.org/10.1016/j.freeradbiomed. 2020.07.022.
- Coppo, E., & Marchese, A. (2014). Antibacterial activity of polyphenols. Current Pharmaceutical Biotechnology, 15(4), 380–390. https://doi.org/10.2174/138920101504140825121142.
- Ellse, L., & Wall, R. (2014). The use of essential oils in veterinary ectoparasite control: a review. Medical and Veterinary Entomology, 28(3), 233–243. https://doi.org/10.1111/mve.12033.
- Farag, R. S., Shalaby, A. S., El-Baroty, G. A., Ibrahim, N. A., Ali, M. A., & Hassan, E. M. (2004). Chemical and biological evaluation of the essential oils of different Melaleuca species. Phytotherapy Research: PTR, 18(1), 30–35. https://doi.org/10.1002/ptr.1348.
- Freires, I. A., Denny, C., Benso, B., de Alencar, S. M., & Rosalen, P. L. (2015). Antibacterial Activity of Essential Oils and Their Isolated Constituents against Cariogenic Bacteria: A Systematic Review. Molecules (Basel, Switzerland), 20(4), 7329–7358. https://doi.org/10.3390/molecules20047329.
- Hall, C. W., & Mah, T. F. (2017). Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiology Reviews, 41(3), 276–301. https://doi.org/10.1093/femsre/fux010.
- Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current Medicinal Chemistry, 10(10), 813–829. https://doi.org/10.2174/0929867033457719.
- Lohakachornpan, P., & Rangsipanuratn W. (2001). Chemical compositions and antimicrobial activities of essential oil from Melaleuca leucadendron var. minor. Thai J. Pharm. Sci., 25, 133–139.
- Martinez J. L. (2014). General principles of antibiotic resistance in bacteria. Drug discovery today. Technologies, 11, 33–39. https://doi.org/10.1016/j.ddtec.2014.02.001.
- Monzote, L., Scherbakov, A. M., Scull, R., Satyal, P., Cos, P., Shchekotikhin, A. E., Gille, L., & Setzer, W. N. (2020). Essential Oil from Melaleuca leucadendra: Antimicrobial, Antikinetoplastid, Antiproliferative and Cytotoxic Assessment. Molecules (Basel, Switzerland), 25(23), 5514. https://doi.org/10.3390/molecules25235514.
- Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 4(2), 10.1128/microbiolspec.VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.
- Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules (Basel, Switzerland), 25(20), 4711. https://doi.org/10.3390/molecules25204711.
- North, O. I., & Brown, E. D. (2021). Phage-antibiotic combinations: a promising approach to constrain resistance evolution in bacteria. Annals of the New York Academy of Sciences, 1496(1), 23–34. https://doi.org/10.1111/nyas.14533.
- Okoth, D.A., Chenia, H.Y., Koorbanally, N.A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Phytochemistry Letters, 6, 476–481. https://doi.org/10.1016/j.phytol.2013.06.003.
- Saifudin, A., Lallo, S. A., & Tezuka, Y. (2016). The Potent Inhibitors of Protein Tyrosine Phosphatase 1B from the Fruits of Melaleuca leucadendron. Pharmacognosy Research, 8(Suppl. 1), S38–S41. https://doi.org/10.4103/0974-8490.178644.
- Sathoff, A. E., & Samac, D. A. (2019). Antibacterial Activity of Plant Defensins. Molecular Plant-Microbe Interactions: MPMI, 32(5), 507–514. https://doi.org/10.1094/MPMI-08-18-0229-CR.
- Schelkle, B., Snellgrove, D., Jones, L. L., & Cable, J. (2015). Efficacy of commercially available products against Gyrodactylus turnbulli infections on guppies Poecilia reticulata. Diseases of Aquatic Organisms, 115(2), 129–137. https://doi.org/10.3354/dao02886.
- Surh, J., & Yun, J. M. (2012). Antioxidant and Anti-inflammatory Activities of Butanol Extract of Melaleuca leucadendron L. Preventive Nutrition and Food Science, 17(1), 22–28. https://doi.org/10.3746/pnf.2012.17.1.022.
- Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. https://doi.org/10.1016/j.micpath.2019.103580.
- Truchan, M., Tkachenko, H., Buyun, L., Kurhaluk, N., Góralczyk, A., Tomin, W., Osadowski, Z. (2019). Antimicrobial Activities of Three Commercial Essential Oils Derived from Plants Belonging to Family Pinaceae. Agrobiodiversity for Improving Nutrition. Health, and Life Quality, (3), 111-126. https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.111-126.
- Valdés, A. F., Martínez, J. M., Lizama, R. S., Vermeersch, M., Cos, P., & Maes, L. (2008). In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L and Artemisia absinthium L. Memorias do Instituto Oswaldo Cruz, 103(6), 615–618. https://doi.org/10.1590/s0074-02762008000600019.
- Waglechner, N., & Wright, G. D. (2017). Antibiotic resistance: it’s bad, but why isn’t it worse? BMC Biology, 15(1), 84. https://doi.org/10.1186/s12915-017-0423-1.
- Wencewicz T. A. (2019). Crossroads of Antibiotic Resistance and Biosynthesis. Journal of Molecular Biology, 431(18), 3370–3399. https://doi.org/10.1016/j.jmb.2019.06.033.
- Wu, Q., & Zhou, J. (2021). The application of polyphenols in food preservation. Advances in Food and Nutrition Research, 98, 35–99. https://doi.org/10.1016/bs.afnr.2021.02.005.
- Zacchino, S. A., Butassi, E., Liberto, M. D., Raimondi, M., Postigo, A., & Sortino, M. (2017). Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 37, 27–48. https://doi.org/10.1016/j.phymed.2017.10.018.
- Zar, J. H. (1999). Biostatistical Analysis. 4th ed., Prentice Hall Inc., New Jersey.