Antibacterial efficacy of leaf extracts derived from ficus elastica roxb. Ex hornem. (moraceae) and its cultivars against aeromonas sobria strain

DOI: 10.32900/2312-8402-2023-129-26-36

Kurhaluk Natalia,
Doctor of Biological Sci.,
https://orcid.org/0000-0002-4669-1092,
Tkachenko Halyna,
Doctor of Biological Sci.,
https://orcid.org/0000-0003-3951-9005,
Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland,
Pękala-Safińska Agnieszka,
Doctor of Biological Sciences,
https://orcid.org/0000-0002-5515-8329,
University of Life Sciences, Poznań, Poland,
Buyun Lyudmyla,
Doctor of Biological Sciences,
https://orcid.org/0000-0002-9158-6451,
M. M. Gryshko National Botanic Garden, National Academy of Science of Ukraine,
Honcharenko Vitaliy,
Ph.D.,
https://orcid.org/0000-0001-6888-2124,
Ivan Franko National University in Lviv, Lviv, Ukraine,
Prokopiv Andriy,
Ph.D.,
https://orcid.org/0000-0003-1690-4090,
Ivan Franko National University in Lviv, Lviv, Ukraine, Botanic Garden of Ivan Franko National University in Lviv, Lviv, Ukraine

Keywords: Ficus elastica Roxb. ex Hornem., extract, antimicrobial efficacy, Kirby-Bauer disk diffusion technique, fish pathogens, susceptibility, resistance


Abstract

The range of healing targets for particular Ficus species compiled from local medicines can be competitive with that of broad-spectrum traditional remedies. In the current study, we studied the antimicrobial activity of the ethanolic extracts derived from the leaves of Ficus elastica Roxb. ex Hornem. and its cultivars (F. elastica ‘Rubra’, ‘Robusta’, ‘Burgundy’, ‘Variegata’) against Aeromonas sobria to evaluate the possible use of this plant in preventing infections caused by this fish pathogen in aquaculture. The current study was conducted as a part of an ongoing project between five universities undertaken in the frame of a cooperation program aimed at the assessment of medicinal properties of tropical and subtropical plants, cultivated in vitro. The leaves of F. elastica and its cultivars, cultivated under glasshouse conditions, were sampled at M. M. Gryshko National Botanic Garden (NBG), National Academy of Science of Ukraine. Specifically, the leaves of F. elastica and its cultivars, i.e. F. elastica ‘Rubra’, ‘Robusta’, ‘Burgundy’, ‘Variegata’ were sampled for our study. Aeromonas sobria (K825) strain, originated from freshwater fish species such as common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss Walbaum), respectively, was isolated in the Department of Fish Diseases, The National Veterinary Research Institute in Pulawy (Poland). Antimicrobial susceptibility of the tested Aeromonas sobria was performed by the Kirby-Bauer disc diffusion method (1966) according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) (2014), with our some modifications. Our results of the antimicrobial screening revealed, that F. elastica and its cultivars possessed mild antibacterial properties against the A. sobria strain. The ethanolic extract obtained from leaves of F. elastica ‘Variegata’ exhibited the maximum antimicrobial activity against A. sobria. Thus, F. elastica and its cultivars (F. elastica ‘Rubra’, ‘Robusta’, ‘Burgundy’, ‘Variegata’) disclosed mild bioactivity, and this plant can be regarded as a potential source of antibacterial agents. The results of the current study provide a new perspective for the use of various species belonging to the Ficus genus as medicinal plants to improve the antibacterial responses in salmonid aquaculture.

References

  1. Ahmadifar, E., Pourmohammadi Fallah, H., Yousefi, M., Dawood, M. A. O., Hoseinifar, S. H., Adineh, H., Yilmaz, S., Paolucci, M., & Doan, H. V. (2021). The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish. Animals: an open access journal from MDPI, 11(8), 2167. https://doi.org/10.3390/ani11082167.
  2. Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45(4), 493–496.
  3. Berg C. C., Corner E. J. H. 2005. Moraceae (Ficus). In: Noteboom H. P. (ed.) Flora Malesiana, Ser. 1, Vol. 17, Part 2. National Herbarium Nederland, Leiden, pp. 1-730.
  4. Clinical and Laboratory Standards Institute: VET03-/VET04-S2 Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals, Second Informational Supplement. Vol. 34, No. 15. CLSI, Wayne, 2014.
  5. Clinical and Laboratory Standards Institute: VET03-A: Methods for antimicrobial disk susceptibility testing of bacteria isolated from aquatic animals; Approved Guideline. Vol. 26, No. 23. CLSI, Wayne, 2006.
  6. Cowan M. M. (1999). Plant products as antimicrobial agents. Clinical microbiology reviews, 12(4), 564–582. https://doi.org/10.1128/CMR.12.4.564.
  7. Cushnie, T. P., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International journal of antimicrobial agents, 26(5), 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002.
  8. Daglia M. (2012). Polyphenols as antimicrobial agents. Current opinion in biotechnology, 23(2), 174–181. https://doi.org/10.1016/j.copbio.2011.08.007.
  9. Dawood, M. A. O., El Basuini, M. F., Yilmaz, S., Abdel-Latif, H. M. R., Alagawany, M., Kari, Z. A., Abdul Razab, M. K. A., Hamid, N. K. A., Moonmanee, T., & Van Doan, H. (2022). Exploring the Roles of Dietary Herbal Essential Oils in Aquaculture: A Review. Animals: an open access journal from MDPI, 12(7), 823. https://doi.org/10.3390/ani12070823.
  10. Hajam, T. A., & Saleem, H. (2022). Phytochemistry, biological activities, industrial and traditional uses of fig (Ficus carica): A review. Chemico-biological interactions, 368, 110237. https://doi.org/10.1016/j.cbi.2022.110237.
  11. Kozińska, A. (2007). Dominant pathogenic species of mesophilic aeromonads isolated from diseased and healthy fish cultured in Poland. Journal of fish diseases, 30(5), 293–301. https://doi.org/10.1111/j.1365-2761.2007.00813.x.
  12. Lansky, E. P., Paavilainen, H. M. (2011). Figs: the genus Ficus. In: Hardman R. (ed.) Traditional herbal medicines for modern times, Vol. 9. CRC Press, Boca Raton, pp. 1-357.
  13. Mbosso Teinkela, J. E., Siwe Noundou, X., Nguemfo, E. L., Meyer, F., Wintjens, R., Isaacs, M., Mpondo Mpondo, A. E., Hoppe, H. C., Krause, R. W. M., & Azebaze, A. G. B. (2018). Biological activities of plant extracts from Ficus elastica and Selaginella vogelli: An antimalarial, antitrypanosomal and cytotoxity evaluation. Saudi journal of biological sciences, 25(1), 117–122. https://doi.org/10.1016/j.sjbs.2017.07.002.
  14. Mbosso, E. J., Nguedia, J. C., Meyer, F., Lenta, B. N., Ngouela, S., Lallemand, B., Mathieu, V., Antwerpen, P. V., Njunda, A. L., Adiogo, D., Tsamo, E., Looze, Y., Kiss, R., & Wintjens, R. (2012). Ceramide, cerebroside and triterpenoid saponin from the bark of aerial roots of Ficus elastica (Moraceae). Phytochemistry, 83, 95–103. https://doi.org/10.1016/j.phytochem.2012.07.010.
  15. Okoth, D. A., Chenia, H. Y., & Koorbanally, N. A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Phytochemistry Letters, 6, 476–481, https://doi.org/10.1016/j.phytol.2013.06.003.
  16. Opryshko, M., Maryniuk, M., Gyrenko, O., Tkachenko, H., Kurhaluk, N., Buyun, L., Honcharenko, V., & Prokopiv, A. (2020). Dose-dependent assessment of the possible antioxidant effects of extracts derived from leaves of Ficus elastica Roxb. ex Hornem. and its cultivars. In: Youth and Progress of Biology: Abstracts of XVI International Scientific Conference for Students and Ph.D. Students, dedicated to the 75th anniversary of the faculty of biology of Ivan Franko National University of Lviv and 90th anniversary from the birthday of prof. M.P. Derkach (Lviv, April 27–29, 2020). Lviv. 44-45.
  17. Pękala-Safińska, A., Tkachenko, H., Kurhaluk, N., Buyun, L., Osadowski, Z., Honcharenko, V., & Prokopiv, A. (2021). Studies on The Inhibitory Properties of Leaf Ethanolic Extracts Obtained from Ficus (Moraceae) Species Against Aeromonas Spp. Strains. Journal of veterinary research, 65(1), 59–66. https://doi.org/10.2478/jvetres-2021-0007.
  18. Phan, V. K., Chau, V. M., Nguyen, X. N., Bui, H. T., Tran, H. Q., Hoang, L. T. A., Nguyen, X. C., Truong, N. H., Seung, H. K., Jin, K. K., Hae-Dong, J., Young, H. K. (2012). Chemical constituents of the Ficus elastica leaves and their antioxidant activities. Bulletin of the Korean Chemical Society, 33, 3461–3464.
  19. Sackeyfio, A. C., & Lugeleka, O. M. (1986). The anti-inflammatory effect of a crude aqueous extract of the root bark of “Ficus elastica” in the rat. Archives internationales de pharmacodynamie et de therapie, 281(1), 169–176.
  20. Salehi, B., Prakash Mishra, A., Nigam, M., Karazhan, N., Shukla, I., Kiełtyka-Dadasiewicz, A., Sawicka, B., Głowacka, A., Abu-Darwish, M. S., Hussein Tarawneh, A., Gadetskaya, A. V., Cabral, C., Salgueiro, L., Victoriano, M., Martorell, M., Docea, A. O., Abdolshahi, A., Calina, D., & Sharifi-Rad, J. (2021). Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytotherapy research: PTR, 35(3), 1187–1217. https://doi.org/10.1002/ptr.6884.
  21. Salem, M. Z. M., Salem, A. Z. M., Camacho, L. M., & Ali, H. M. (2013). Antimicrobial activities and phytochemical composition of extracts of Ficus species: An over view. African Journal of Microbiology Research, 7(33), 4207–4219. https://doi.org/10.5897/AJMR2013.5570.
  22. Seif el-Din, S. H., El-Lakkany, N. M., Mohamed, M. A., Hamed, M. M., Sterner, O., & Botros, S. S. (2014). Potential effect of the medicinal plants Calotropis proceraFicus elastica and Zingiber officinale against Schistosoma mansoni in mice. Pharmaceutical biology, 52(2), 144–150. https://doi.org/10.3109/13880209.2013.818041.
  23. Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, O., Sosnovskyi, Y., Honcharenko, V., & Prokopiv, A. (2016). In vitro antibacterial efficacy of Ficus spp. against fish pathogen, Pseudomonas fluorescens. In: International Forum “The Current State and Prospects for the Development of Aquaculture in the Caspian Region“, dedicated to the 85th anniversary of Dagestan State University and the 75th anniversary of Professor F. Magomayev. Ed. F. Magomayev, S. Chalayeva, S. Kurbanova, A. Shakhnazova (Makhachkala, 17-19 October, 2016) Makhachkala, Printing house IPE RD. 182-189.
  24. Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z. (2016). Antibacterial activity of ethanolic leaf extracts obtained from various Ficus species (Moraceae) against the fish pathogen, Citrobacter freundiiBaltic Coastal Zone – Journal of Ecology and Protection of the Coastline, 20, 117–136.
  25. Tkachenko, H., Buyun, L., Terech-Majewska, E., & Osadowski, Z. (2016). In vitro antimicrobial activity of ethanolic extracts obtained from Ficus spp. leaves against the fish pathogen Aeromonas hydrophilaArchives of Polish Fisheries, 24, 219–230. https://doi.org/10.1515/aopf-2016-0019
  26. Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z., Sosnovskyi, Y., Honcharenko, V., Prokopiv, A. (2016). The antimicrobial activity of some ethanolic extracts obtained from Ficus spp. leaves against Aeromonas hydrophilaTrudy VNIRO, 162, 172–183.
  27. Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z., Sosnovskyi, Y., Honcharenko, V., & Prokopiv, A. (2016). In vitro antibacterial efficacy of various ethanolic extracts obtained from Ficus spp. leaves against fish pathogen, Pseudomonas fluorescens. In: Globalisation and regional environment protection. Technique, technology, ecology. Eds Tadeusz Noch, Wioleta Mikołajczewska, Alicja Wesołowska. Gdańsk, Gdańsk High School Publ., 265-286.
  28. Tkachenko, H., Kurhaluk, N., Buyun, L., Honcharenko, V., & Prokopiv, A. (2022). Carbonyl derivatives of oxidatively modified proteins in the muscle tissue of the rainbow trout (Oncorhynchus mykiss Walbaum) after in vitro incubation with extracts derived from leaves of Ficus elastica Roxb. ex Hornem. (Moraceae) and its cultivars. In: Medicinal Herbs: from Past Experience to New Technologies: Proceedings of Tenth International Scientific and Practical Conference, November, 21-22, 2022, Poltava State Agrarian University, Poltava. 161-166. https://doi.org/10.5281/zenodo.7493011.
  29. Tkachenko, H., Pękala-Safińska, A., Buyun, L., & Kurhaluk, N. (2022). A comparative assessment of the antibacterial activity of extracts derived from leaves of various Ficus species (Moraceae) against fish pathogens. Fisheries & Aquatic Life, 30(4), 217–231. https://doi.org/10.2478/aopf-2022-0021.
  30. Tkachenko, Н., Buyun, L., Terech-Majewska, Е., Sosnovskyi, Y., Honcharenko, V., & Prokopiv, А. (2016). In vitro inhibition of Aeromonas hydrophila growth by ethanolic extracts obtained from leaves of various Ficus species (Moraceae). Proceedings of V scientific and practical conference of International Association of Parasilotogists “Parasitic systems and parasitocoenoses of animals“, June 24-27, 2016, Vytebsk, Republic Belarus, Vytebsk. 231-234.
  31. Zar, J. H. (1999). Biostatistical Analysis. 4th ed., Prentice Hall Inc., New Jersey.
  32. Zare, M., Esmaeili, N., Paolacci, S., & Stejskal, V. (2023). Nettle (Urtica dioica) Additive as a Growth Promoter and Immune Stimulator in Fish. Aquaculture nutrition, 2023, 8261473. https://doi.org/10.1155/2023/8261473.