DOI: 10.32900/2312-8402-2025-133-162-174
Keywords: progesterone, estrous cycle, dogs, body condition, temperament, reproductive function, hormonal regulation
The aim of this study was to examine the influence of individual characteristics of female dogs (Canis familiaris) of the Bull Terrier breed on the dynamics of progesterone levels in their blood throughout the estrous cycle. The experiment involved 25 clinically healthy female dogs divided into three age groups: young (1.4 years), middle-aged (4.8 years), and older dogs (8.6 years). The health status of the animals was assessed through clinical examinations and laboratory analyses, including the determination of reproductive status using folliculometry, vaginal cytology, and blood progesterone level analysis. Blood samples were collected from the jugular vein during key periods of the estrous cycle and analyzed using an enzyme-linked immunosorbent assay (“Progesterone – ELISA,” HEMA, Ukraine). Additionally, the impact of body condition (evaluated using the BCS scale) and temperament (assessed using the C-BARQ questionnaire) on hormonal status was investigated. To this end, 12 groups of female dogs were formed according to behavioral characteristics (aggression, fear and anxiety, excitability, learning ability, and obedience). All experimental procedures complied with the requirements of the Ukrainian Law “On the Protection of Animals from Cruelty” and the principles of the European Convention for the Protection of Vertebrate Animals Used for Experimental and Scientific Purposes. The results of two-factor ANOVA revealed that, regardless of age, body weight, or temperament, the stage of the estrous cycle was the determining factor influencing blood progesterone levels (F=79.8–173.0; P<0.001). Among individual characteristics, body weight had the greatest impact (F=16.3; P<0.001), while age differences showed a statistically significant but less pronounced effect (F=3.65; P<0.05). The temperament of female dogs also significantly affected progesterone levels, particularly in terms of aggression (F=10.68; P<0.001), fear and anxiety (F=9.21; P<0.001), and excitability (F=7.6; P<0.001). In contrast, learning ability and obedience did not show a significant effect on hormonal status (F=0.91; P=0.41). Analysis of interaction effects revealed a significant relationship between body weight, behavioral characteristics (aggression, fear), and the stage of the estrous cycle (F=2.24–2.92; P<0.005–0.001). This indicates that individual physiological and behavioral traits influence the endocrine regulation of reproductive function in female dogs. The findings expand the understanding of regulatory mechanisms in the estrous cycle of dogs and emphasize the need to consider individual characteristics when planning veterinary interventions and breeding programs.
References
Blendinger, K., & Bostedt, H. (1991). The age and stage of estrus in bitches with pyometra. Statistical inquiry and interpretive study of the understanding of variability. Tierarztliche Praxis, 19(3), 307–310.
Boyd, C., Jarvis, S., McGreevy, P. D., Heath, S., Church, D. B., Brodbelt, D. C., & O’Neill, D. G. (2018). Mortality resulting from undesirable behaviours in dogs aged under three years attending primary-care veterinary practices in England. Animal Welfare, 27(3), 251–262.
Brannian, J. D., Schmidt, S. M., Kreger, D. O., & Hansen, K. A. (2001). Baseline non-fasting serum leptin concentration to body mass index ratio is predictive of IVF outcomes. Human Reproduction, 16(9), 1819–1826.
Burke, C. (2022). The role of energy and weight: from conception to adulthood. The Veterinary Nurse, 13(4), 183–187.
Cave, N. J., Allan, F. J., Schokkenbroek, S. L., Metekohy, C. A. M., & Pfeiffer, D. U. (2012). A cross-sectional study to compare changes in the prevalence and risk factors for feline obesity between 1993 and 2007 in New Zealand. Preventive Veterinary Medicine, 107(1–2), 121–133.
Cobb, M., Branson, N., McGreevy, P., Lill, A., & Bennett, P. (2015). The advent of canine performance science: Offering a sustainable future for working dogs. Behavioural Processes, 110, 96–104. https://doi.org/https://doi.org/10.1016/j.beproc.2014.10.012
Concannon, P. W. (2009). Endocrinologic control of normal canine ovarian function. Reproduction in Domestic Animals = Zuchthygiene, 44 Suppl 2, 3–15. Retrieved from https://api.semanticscholar.org/CorpusID:37515855
Concannon, P. W. (2011). Reproductive cycles of the domestic bitch. Animal Reproduction Science, 124 3-4, 200–210. Retrieved from https://api.semanticscholar.org/CorpusID:33165495
Concannon, P. W., Butler, W. R., Hansel, W., Knight, P. J., & Hamilton, J. M. (1978). Parturition and Lactation in the Bitch: Serum Progesterone, Cortisol and Prolactin. Biology of Reproduction, 19(5), 1113–1118. https://doi.org/10.1095/BIOLREPROD19.5.1113
Concannon, P. W., Castracane, V. D., Temple, M., & Montanez, A. (2009). Endocrine control of ovarian function in dogs and other carnivores. Animal Reproduction, 6, 172–193. Retrieved from https://api.semanticscholar.org/CorpusID:43599259
Conley, A. J., Gonzales, K. L., Erb, H. N., & Christensen, B. W. (2023). Progesterone Analysis in Canine Breeding Management. Veterinary Clinics: Small Animal Practice, 53(5), 931–949.
Czerwinski, V. H., Smith, B. P., Hynd, P. I., & Hazel, S. J. (2016). The influence of maternal care on stress-related behaviors in domestic dogs: What can we learn from the rodent literature? Journal of Veterinary Behavior: Clinical Applications and Research, 14, 52–59. https://doi.org/10.1016/J.JVEB.2016.05.003
Feldman, E. C., Nelson, R. W., Reusch, C., & Scott-Moncrieff, J. C. (2014). Canine and feline endocrinology-e-book. Elsevier health sciences.
Gresky, C., Hamann, H., & Distl, O. (2005). Influence of inbreeding on litter size and the proportion of stillborn puppies in dachshunds. Berliner Und Munchener Tierarztliche Wochenschrift, 118(3–4), 134–139.
Hanukoglu, I., Karavolas, H. J., & Goy, R. W. (1977). Progesterone metabolism in the pineal, brain stem, thalamus and corpus callosum of the female rat. Brain Research, 125(2), 313–324. https://doi.org/10.1016/0006-8993(77)90624-2
Hecht, E. E., Zapata, I., Alvarez, C. E., Gutman, D. A., Preuss, T. M., Kent, M., & Serpell, J. A. (2021). Zapata. Brain Structure & Function, 226(8), 2725–2739. https://doi.org/10.1007/s00429-021-02368-8
Holesh, J. E., Bass, A. N., & Lord, M. (2023). Physiology, Ovulation. StatPearls. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK441996/
Kakhanouskaya K. Y., S. I. V. (2017). Kinetic studies of cow milk lactoperoxidase. Belarus. State Univ. Biol., 2, 66–71.
Knox, R. V, Vatzias, G., Naber, C. H., & Zimmerman, D. R. (2003). Plasma gonadotropins and ovarian hormones during the estrous cycle in high compared to low ovulation rate gilts. Journal of Animal Science, 81(1), 249–260.
Kowalewski, Mariusz P. (2014). Luteal regression vs. prepartum luteolysis: Regulatory mechanisms governing canine corpus luteum function. Reproductive Biology, 14(2), 89–102. https://doi.org/10.1016/J.REPBIO.2013.11.004
Kowalewski, Mariusz Pawel, Beceriklisoy, H. B., Pfarrer, C., Aslan, S., Kindahl, H., Kücükaslan, I., & Hoffmann, B. (2010). Canine placenta: A source of prepartal prostaglandins during normal and antiprogestin-induced parturition. Reproduction, 139(3), 655–664. https://doi.org/10.1530/REP-09-0140
Luz, M. R., Bertan, C. M., Binelli, M., & Lopes, M. D. (2006). Plasma concentrations of 13,14-dihydro-15-keto prostaglandin F2-alpha (PGFM), progesterone and estradiol in pregnant and nonpregnant diestrus cross-bred bitches. Theriogenology, 66(6–7), 1436–1441. https://doi.org/10.1016/j.theriogenology.2006.01.036
Marinelli, L., Rota, A., Carnier, P., Da Dalt, L., & Gabai, G. (2009). Factors affecting progesterone production in corpora lutea from pregnant and diestrous bitches. Animal Reproduction Science, 114(1–3), 289–300. https://doi.org/10.1016/J.ANIREPROSCI.2008.10.001
Marinelli, L., Rota, A., Carnier, P., Da Dalt, L., & Gabai, G. (2009). Factors affecting progesterone production in corpora lutea from pregnant and diestrous bitches. Animal Reproduction Science, 114(1–3), 289–300. https://doi.org/10.1016/J.ANIREPROSCI.2008.10.001
Martin, N., Höftmann, T., Politt, E., Hoppen, H. O., Sohr, M., Günzel-Apel, A. R., & Einspanier, A. (2009). Morphological examination of the corpora lutea from pregnant bitches treated with different abortifacient regimes. Reproduction in Domestic Animals, 44(SUPPL. 2), 185–189. https://doi.org/10.1111/J.1439-0531.2009.01430.X
Morrill, K., Hekman, J., Li, X., McClure, J., Logan, B., Goodman, L., Carmichael, E. (2022). Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science, 376(6592), eabk0639.
Mutembei, H. M., Mutiga, E. R., & Tsuma, V. T. (2002). An epidemiological survey demonstrating decline in reproductive efficiency with age and non-seasonality of reproductive parameters in German shepherd bitches in Kenya. Journal of the South African Veterinary Association, 73(1), 36–37.
O′ Neill, D. G., Church, D. B., McGreevy, P. D., Thomson, P. C., & Brodbelt, D. C. (2014). Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. PloS One, 9(3), e90501.
Papa, P. C., & Hoffmann, B. (2011). The Corpus Luteum of the Dog: Source and Target of Steroid Hormones? Reproduction in Domestic Animals, 46(4), 750–756. https://doi.org/10.1111/J.1439-0531.2010.01749.X
Papa, P., & Kowalewski, M. P. (2020). Factors affecting the fate of the canine corpus luteum: Potential contributors to pregnancy and non-pregnancy. Theriogenology. Retrieved from https://api.semanticscholar.org/CorpusID:211261844
Park, C. J., Lin, P.-C., Zhou, S., Barakat, R., Bashir, S. T., Choi, J. M., Lydon, J. P. (2020). Progesterone receptor serves the ovary as a trigger of ovulation and a terminator of inflammation. Cell Reports, 31(2).
Pennsylvania, U. of. (2023). The C-BARQ is designed to provide dog owners and professionals with standardized evaluations of canine temperament and behavior. Retrieved from https://vetapps.vet.upenn.edu/cbarq/
Pereira, M. M., Mainigi, M., & Strauss III, J. F. (2021). Secretory products of the corpus luteum and preeclampsia. Human Reproduction Update, 27(4), 651–672.
Reynolds, L. P., & Redmer, D. A. (1999). Growth and development of the corpus luteum. Journal of reproduction and fertility-supplement-, 181–191.
Rosati, A. G., & Hare, B. (2013). Chimpanzees and bonobos exhibit emotional responses to decision outcomes. PloS One, 8(5), e63058.
Schumacher, M., Guennoun, R., Robert, F., Carelli, C., Gago, N., Ghoumari, A., … De Nicola, A. F. (2004). Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Hormone & IGF Research, 14(SUPPL. A), 18–33. https://doi.org/10.1016/J.GHIR.2004.03.007
Serpell, J. A. (2015). The C-BARQ questionnaire. University of Pennisylvania Vet Med.
Singh, M., Su, C., & Ng, S. (2013). Non-genomic mechanisms of progesterone action in the brain. Frontiers in Neuroscience, 7(7 SEP), 60052. https://doi.org/10.3389/FNINS.2013.00159/BIBTEX
Solano-Gallego, L., & Masserdotti, C. (2016). Reproductive system. Canine and Feline Cytology, 313.
Sousa, L. M. M. D. C., Silva, R. dos S., da Fonseca, V. U., Leandro, R. M., Di Vincenzo, T. S., Alves-Wagner, A. B., … De Papa, P. C. (2016). Is the canine corpus luteum an insulin-sensitive tissue? Journal of Endocrinology, 231(3), 223–233. https://doi.org/10.1530/JOE-16-0173
Zapata, I., Eyre, A. W., Alvarez, C. E., & Serpell, J. A. (2022). Latent class analysis of behavior across dog breeds reveal underlying temperament profiles. Scientific Reports, 12(1), 15627. https://doi.org/10.1038/s41598-022-20053-6