DOI: 10.32900/2312-8402-2019-122-18-30
Keywords: Ficus lyrata, Ficus lyrata Bambino, Aeromonas sobria, Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, antimicrobial activity, disc diffusion technique, ethanolic extracts
Abstract
The aim of the present study was to assess the antibacterial efficacy of ethanolic extracts derived from F. lyrata and its cultivar F. lyrata ‘Bambino’ against three Aeromonas strains (Aeromonas sobria, Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida). The leaves of plants were collected in M. M. Gryshko National Botanic Garden (NBG, Kyiv, Ukraine) and Botanic Garden of Ivan Franko Lviv National University (Lviv, Ukraine). Freshly collected leaves were weighed and homogenized in 96 % ethanol (in proportion 1:10) at room temperature. Three Aeromonas strains: Aeromonas sobria (K825) and Aeromonas hydrophila (K886), as well as Aeromonas salmonicida subsp. salmonicida (St30), originated from freshwater fish species such as common carp (Cyprinus carpio L.) and rainbow trout (Oncorhynchus mykiss Walbaum), respectively, were isolated in Department of Fish Diseases, The National Veterinary Research Institute in Pulawy (Poland). Bacteria were collected from fish exhibiting clinical disorders. Our results demonstrated that three Aeromonas strains (Aeromonas sobria, Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida) were resistant to ethanolic extract derived from F. lyrata. The inhibition zone diameters were (9.50±0.33 mm), (9.38±0.38 mm), and (9.5±0.5 mm) for Aeromonas sobria, Aeromonas hydrophila and Aeromonas salmonicida subsp. salmonicida (St30), respectively. F. lyrata ‘Bambino’ extract exhibited the intermediate activity against Aeromonas sobria (inhibition zone diameter was 12±0.73 mm), while Aeromonas hydrophila and Aeromonas salmonicida subsp. salmonicida (St30) were resistant (inhibition zone diameters were 9.18±0.54 mm and 9.13±0.44 mm). These results pave the way for the possible development of natural additives to replace synthetic ones. Therefore, further investigations for the isolation of active constituents and their pharmacological evaluation as well as in vitro and in vivo study are required.
References
- Abu-Elala, N., Abdelsalam, M., Marouf, S., Setta, A. (2015). Comparative analysis of virulence genes, antibiotic resistance and gyrB-based phylogeny of motile Aeromonas species isolates from Nile tilapia and domestic fowl. Appl. Microbiol., 61(5), 429-436. DOI: 10.1111/lam.12484.
- Atindehou, K. K., Koné, M., Terreaux, C., Traore, D., Hostettmann, K., Dosso, M. (2002). Evaluation of the antimicrobial potential of medicinal plants from the Ivory Coast. Phytotherapy Research, 16, 497-502. DOI: 10.1002/ptr.970.
- Badgujar, S. B., Patel, V. V., Bandivdekar, A. H., Mahajan, R. T. (2014). Traditional uses, phytochemistry and pharmacology of Ficus carica: a review. Biol., 52(11), 1487-1503. DOI: 10.3109/13880209.2014.892515.
- Beltrán, J. M. G., Espinosa, C., Guardiola, F. A., Esteban, M. Á. 2018. In vitro effects of Origanum vulgare leaf extracts on gilthead seabream (Sparus aurata) leucocytes, cytotoxic, bactericidal and antioxidant activities. Fish Shellfish Immunol., 79, 1-10. DOI: 10.1016/j.fsi.2018.05.005.
- Berg, C. C., Wiebes, J. T. (1992). African fig trees and fig wasps. Koninklijke Nederlandse Akademie van Wetenschappen, Verhandelingen Afdeling Natuurkunde, 2de reeks, deel 89. North-Holland, Amsterdam, 298 p.
- Bunawan, H., Amin, N. M., Bunawan, S. N., Baharum, S. N., Mohd Noor, N. (2014). Ficus deltoidea Jack: A Review on Its Phytochemical and Pharmacological Importance. Based Complement. Alternat. Med., 2014, 902734. DOI:10.1155/2014/902734.
- Chakraborty, S. , Hancz, C. (2011). Application of phytochemicals as immunostimulant, antipathogenic and antistress agents in finfish culture. Rev. Aquac., 3, 103-119. DOI: 10.1111/j.1753-5131.2011.01048.x.
- Clarke, J. L., Waheed, M. T., Lössl, A. G., Martinussen, I., Daniell, H. (2013). How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture? Plant Mol. Biol., 83(1-2), 33-40. DOI: 10.1007/s11103-013-0081-9.
- Clinical and Laboratory Standards Institute (CLSI) (2006) VET03-A Methods for antimicrobial disk susceptibility testing of bacteria isolated from aquatic animals, Approved Guideline. Vol. 26, No. 23, Wayne, PA, USA.
- Clinical and Laboratory Standards Institute (CLSI) (2014) VET03-/VET04-S2 Performance standards for antimicrobial susceptibility testing of bacteria isolated from aquatic animals, Second Informational Supplement. Vol. 34, No. 15, Wayne, PA, USA.
- Dangarembizi, R., Erlwanger, K. H., Moyo, D., Chivandi, E. (2012). Phytochemistry, pharmacology and ethnomedicinal uses of Ficus thonningii (Blume Moraceae): a review. J. Tradit. Complement. Altern. Med., 10(2), 203-212. DOI:10.4314/ajtcam.v10i2.4.
- Farrukh,, Ahmad, I. (2003). Broad-spectrum antibacterial and antifungal properties of certain traditionally used Indian medicinal plants. World Journal of Microbiology and Biotechnology, 19, 653-657. DOI: 10.1023/A:1025128104056.
- Figueras, M. J., Latif-Eugenín, F., Ballester, F., Pujol, I., Tena, D., Berg, K., Hossain, M. J., Beaz-Hidalgo, R., Liles, M. R. (2016). ‘Aeromonas intestinalis‘ and ‘Aeromonas enterica’ isolated from human faeces, ‘Aeromonas crassostreae’ from oyster and ‘Aeromonas aquatilis’ isolated from lake water represent novel species. New Microbes New Infect., 15, 74-76. DOI: 10.1016/j.nmni.2016.11.019.
- Gonçalves Pessoa, R. B., de Oliveira, W. F., Marques, D. S. C., Dos Santos Correia, M. T., de Carvalho, E. V. M. M., Coelho, L. C. B. B. (2019). The genus Aeromonas: A general approach. Pathog., 130, 81-94. DOI: 10.1016/j.micpath.2019.02.036.
- Janda, J. , Abbott, S. L. (2010). The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev., 23(1), 35-73. DOI: 10.1128/CMR.00039-09.
- Koné, W.M., Atindehou, K.K., Terreaux, C., Hostettmann, K., Traoré, D., Dosso, M. (2004). Traditional medicine in North Côte-d’Ivoire: screening of 50 medicinal plants for antibacterial activity. Journal of Ethnopharmacology, 93, 43-49. DOI:1016/j.jep.2004.03.006.
- Kozińska, A. (2007). Dominant pathogenic species of mesophilic aeromonads isolated from diseased and healthy fish cultured in Poland. Journal of Fish Diseases, 30, 293-301. DOI: 10.1111/j.1365-2761.2007.00813.x.
- Kubmarawa, D., Ajoku, G. , Enwerem, N. M., Okorie, D. A. (2007). Preliminary phytochemical and antimicrobial acreening of 50 medicinal plants from Nigeria. African Journal of Biotechnology, 6(14), 1690-1696.
- Lansky, E. P., Paavilainen, H. M. (2011). Figs: the genus Ficus. In: Hardman R. (ed.) Traditional herbal medicines for modern times, vol. 9. CRC Press, Boca Raton, p. 1–
- Magnadottir, B. (2010). Immunological control of fish diseases. Biotechnol. (NY), 12(4), 361-379. DOI: 10.1007/s10126-010-9279-x.
- Nair, R., Chanda, S. (2006). Activity of some medicinal plants against certain pathogenic bacterial strains. Indian Journal of Pharmacology, 38(2), 142-144. DOI:4103/0253-7613.24625.
- Nair, R., Chanda, S. V. (2007). Antibacterial activities of some medicinal plants of the western region of India. Turkish Journal of Biology, 31, 231-236. DOI:1155/2018/2950758.
- Nielsen, M. E., Hoil, L., Chmidt, A. S., Qian, D., Shimada, T., Shen, J. Y., Larsen, J. L. (2001). Is Aeromonas hydrophila the dominant motile Aeromonas species that causes disease outbreaks in aquaculture production in the Zhejiang Province of China? Dis. Aquat. Organ., 46, 23-29. DOI: 10.3354/dao046023.
- Nimri, L. F., Meqdam, M. M., Alkofahi, A. (1999). Antibacterial activity of Jordanian medicinal plants. Pharmaceutical Biology, 37(3), 196-201. DOI:3109/13880209.2013.853811.
- Okoth, D. A., Chenia, H. Y., Koorbanally, N. A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Lett., 6, 476–481. DOI: 10.1016/j.phytol.2013.06.003.
- Parker, J. L., Shaw, J. G. (2011). Aeromonas clinical microbiology and disease. J. Infect., 62(2), 109-118. DOI: 10.1016/j.jinf.2010.12.003.
- Percival, S. L., Williams, D. W. (2014). Aeromonas. Second ed., Elsevier.
- Protabase – Plant Resources of Tropical Africa. 2019-07-20. Website http://www.prota.org
- Rajiv, P., Rajeshwari, S. (2012). Screening for phytochemicals and antimicrobial activity of aqueous extract of Ficus religiosa International Journal of Pharmacy and Pharmaceutical Sciences, 4, 207-209.
- Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B., Sasal, P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current statusand future perspectives. Aquaculture, 433, 50-61. DOI: 1016/ j.aquaculture.2014.05.048.
- Rizvi, W., Rizvi, M., Kumar, R., Kumar, A., Shukla, I., Parveen, M. (2009). Antibacterial Activity of Ficus lyrata – An In vitro The Internet Journal of Pharmacology, 8(2).
- Singh, D., Singh, B., Goel, R. K. (2011). Traditional uses, phytochemistry and pharmacology of Ficus religiosa: a review. Ethnopharmacol., 134(3), 565-583. DOI: 10.1016/j.jep.2011.01.046.
- Tkachenko, G., Buyun, L., Osadovskyy, Z., Truhan, M., Sosnowski, E., Prokopiv, A., Goncharenko, V. (2016). In vitro screening of antimicrobial activity of ethanolic extract obtained from Ficus lyrata (Moraceae) leaves. Agroecological Journal, 2, 155-160.
- Tkachenko, H., Buyun, L., Kasiyan, O., Terech-Majewska, E., Honcharenko, V., Prokopiv, A., Osadowski, Z. (2018). Preliminary in vitro screening of antibacterial activity of leaf extract from Ficus natalensis natalensis Hochst. (Moraceae) against fish pathogens. Agrobiodiversity for Improving Nutrition, Health and Life Quality, (2), 170-183. DOI: 10.15414/agrobiodiversity.2018.2585-8246.170-183.
- Tkachenko, H., Buyun, L., Osadowski,, Honcharenko, V., Prokopiv, A. (2017). The antimicrobial efficacy of ethanolic extract obtained from Ficus benghalensis L. (Moraceae) leaves. Agrobiodiversity for improving nutrition, health, and life quality, 1, 438–445. DOI: 10.15414/agrobiodiversity.2017.2585-8246.438-445.
- Tkachenko, H., Buyun, L., Osadowski, Z., Prokopiv, A., Honcharenko, V. (2017). Studies on antibacterial activity of Ficus binnendijkii (Moraceae) leaf extract. Visnyk Kyyivsʹkoho natsionalʹnoho universytetu imeni Tarasa Shevchenka (Introduktsiya ta zberezhennya roslynnoho riznomanittya) [Bulletin of the Taras Shevchenko National University of Kyiv (Introduction and Conservation of Plant Diversity)], 1(35), 57–61.
- Tkachenko, H., Buyun, L., Osadowski, Z., Terech-Majewska, E., Honcharenko, V., Prokopiv, A. (2017). Comparative study of the antimicrobial efficacy of the ethanolic leaf extract of Ficus benghalensis (Moraceae) against bacterial fish pathogens. Słupskie Prace Biologiczne, 14, 209–228.
- Tkachenko, H., Buyun, L., Terech-Majewska, E., Honcharenko, V., Prokopiv, A., Osadowski, Z. (2019). Preliminary in vitro screening of the antibacterial activity of leaf extracts from various Ficus species (Moraceae) against Yersinia ruckeri. Aquat. Life, 27, 15-26. DOI: 10.2478/aopf-2019-0002.
- Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z. (2016). Antibacterial activity of ethanolic leaf extracts obtained from various Ficus species (Moraceae) against the fish pathogen, Citrobacter freundii. Baltic Coastal Zone – Journal of Ecology and Protection of the Coastline, 20, 117–136.
- Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z. (2016). In vitro antimicrobial activity of ethanolic extracts obtained from Ficus leaves against the fish pathogen Aeromonas hydrophila. Arch. Pol. Fish., 24, 219–230. DOI:10.1515/aopf-2016-0019.
- Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z. (2017). Antibacterial screening of ethanolic extracts obtained from leaves of various Ficus species (Moraceae) against Citrobacter freundii. In Trudy VNIRO, 167, 138–
- Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z. (2017). Screening for antimicrobial activities of the ethanolic extract derived from Ficus hispida f. leaves (Moraceae) against fish pathogens. Научные труды Дальрыбвтуза (Scientific Journal of DALRYBVTUZ), 41, 56-64.
- Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z. Sosnovskyi, Y., Honcharenko, V., Prokopiv, A. (2016). The antimicrobial activity of some ethanolic extracts obtained from Ficus leaves against Aeromonas hydrophila. Trudy VNIRO, 162, 172–183.
- Tkachenko, H., Buyun, L., Terech-Majewska, E., Osadowski, Z., Sosnovskyi, Y., Honcharenko, V., Prokopiv, A. (2016). In vitro antibacterial efficacy of various ethanolic extracts obtained from Ficus leaves against the fish pathogen, Pseudomonas fluorescens. In Globalisation and regional environment protection. Technique, technology, ecology. Sci. eds T. Noch, W. Mikołajczewska, A. Wesołowska. Gdańsk, Gdańsk High School Publ., p. 265–286.
- Valsaraj, R., Pushpangadan, P., Smitt, U.W., Adsersen, A., Nyman, U. (1997). Antimicrobial screening of selected medicinal plants from India. Journal of Ethnopharmacology, 58, 75-83. DOI: 10.1016/s0378-8741(97)00085-8.
- Vega-Sánchez, V., Latif-Eugenín, F., Soriano-Vargas, E., Beaz-Hidalgo, R., Figueras, M. J., Aguilera-Arreola, M. G., Castro-Escarpulli, G. (2014). Re-identification of Aeromonas isolates from rainbow trout and incidence of class 1 integron and β-lactamase genes. Microbiol., 172(3-4), 528-533. DOI:10.1016/j.vetmic.2014.06.012.
- Vijayaraj, , Sri Kumaran, N. (2017). Biosynthesis of silver nanoparticles from Hibiscus rosa sinensis: an approach towards antimicrobial activity on fish pathogen Aeromonas hydrophyla. International Journal of Pharmaceutical Sciences and Research, 8(8), 5241-5246. DOI: 10.13040/IJPSR.0975-8232.8(12).5241-46.
- Wira, D. W., Mardawati, E., Setyowati, E. Y., Dahlan, A., Roostita, L., Balia (2018). The comparative study of the fruit and leaf extract of Ficus lyrata Warb on antibacterial activities. 2nd Nommensen International Conference on Technology and Engineering, IOP Conf. Series: Materials Science and Engineering, 420, 012077.
- Yadav, R. K., Nandy, B. C., Maity, S., Sarkar, S., Saha, S. (2015). Phytochemistry, pharmacology, toxicology, and clinical trial of Ficus racemosa. Rev., 9(17), 73-80. DOI: 10.4103/0973-7847.156356.